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A study of streamwise oriented vortical structures embedded in turbulent boundary
layers is performed by investigating an experimental database acquired by stereoscopic
particle image velocimetry (SPIV) in a plane normal both to the mean flow and
the wall. The characteristics of the experimental data allow us to focus on the
spatial organization within the logarithmic region for Reynolds numbers Reθ up
to 15 000. On the basis of the now accepted hairpin model, relationships and
interaction between streamwise vortices are first investigated via computation of
two-point spatial correlations and the use of linear stochastic estimation (LSE).
These analyses confirm that the shape of the most probable coherent structures
corresponds to an asymmetric one-legged hairpin vortex. Moreover, two regions of
different dynamics can be distinguished: the near-wall region below y+ = 150, densely
populated with strongly interacting vortices; and the region above y+ = 150 where
interactions between eddies happen less frequently. Characteristics of the detected
eddies, such as probability density functions of their radius and intensity, are then
studied. It appears that Reynolds number as well as wall-normal independences of
these quantities are achieved when scaling with the local Kolmogorov scales. The most
probable size of the detected vortices is found to be about 10 times the Kolmogorov
length scale. These results lead us to revisit the equation for the mean square vorticity
fluctuations, and to propose a new balance of this equation in the near-wall region.
This analysis and the above results allow us to propose a new description of the
near-wall region, leading to a new scaling which seems to have a good universality
in the Reynolds-number range investigated. The possibility of reaching a universal
scaling at high enough Reynolds number, based on the external velocity and the
Kolmogorov length scale is suggested.

1. Introduction
Despite their apparent random character, wall-bounded turbulent flows are now

known to consist of well-organized turbulent structures which play a key role in
generating and sustaining turbulence. A large amount of work has been devoted to
the study of these coherent structures over the last five decades and, though their

† Present address: Ecole Centrale de Nantes, Laboratoire de Mécanique des Fluides, 1 rue de la
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creation process and their dynamics are still not fully understood, general agreement
has been reached concerning their nature: streamwise vortices, low- and high-speed
velocity regions (streaks), sweeps and ejections, and hairpin- or cane-shaped vortices
constitute the main coherent structures near the wall. Robinson (1991) and Panton
(1997) provide extensive overviews on the investigation of wall turbulence coherent
structures. Adrian (2007) has provided an extensive synthesis of the knowledge about
vortical structures in wall turbulence.

The model of hairpin-shaped (or horseshoe) vortices was first proposed by
Theodorsen (1952) to explain many features of wall turbulence and was later
confirmed experimentally, by flow visualization by Head & Bandyopadhyay (1981).
This idealized vortical structure is characterized by its three-dimensional structure,
which consists of a pair of counter-rotating legs and a head segment joined by two
necks to the legs. The work of Head & Bandyopadhyay (1981) has motivated many
studies to investigate and confirm the nature and the role of hairpin-like structures
(Robinson 1991). It should be noted that several studies reported asymmetric hairpins
or ‘cane’ vortices rather than symmetric ones (Choi & Guezennec 1989; Guezennec,
Piomelli & Kim 1989; Robinson 1991). Since the early contribution by Spalart (1989),
direct numerical simulation (DNS) of turbulent flows has offered the possibility of
studying both in space and time, the birth and the development of coherent structures
(Robinson 1991; Brooke & Hanratty 1993; Panton 1997; Zhou et al. 1999). For a
long time, the main problem of DNS was the range of Reynolds numbers reached,
which did not allow the development of a real log region, either in channels, or
in boundary layers. The progress of supercomputers has recently allowed DNS of
channel flows to reach Reynolds numbers which can be considered as relevant and
free from low-Reynolds-number effects.

Tanahashi et al. (2004), Kang, Tanahashi & Miyauchi (2005) and Das et al. (2006)
performed an extensive study of fine-scale eddies in channel flows at Reynolds
number Reτ = huτ/ν = h+ (where h is half the channel height) from 100 to 1270.
They developed a specific detection algorithm, based on the second invariant Q of the
velocity gradient tensor and requesting no threshold. They identified ‘coherent’ fine
eddies’ which appear in the whole wall layer (from y+ = 1 to the channel centreline)
and which scale with Kolmogorov micro-scales when varying the Reynolds number.
The most intense eddies have a size of 10 to 12 η (the whole range being between
6 and 90 η) and their intensity scales with urms =

√
u′

iu
′
i/3 (while the whole range

of vortices observed scales better on the Kolmogorov velocity scale). Away from the
wall, they look much like the fine eddies found in isotropic turbulence. Near the wall,
they are stronger (up to 3urms ) and subject to large compression and stretching. It
is interesting that the authors could fit a model to the vortices. By determining the
direction of the vorticity vector in the vortices and by projecting the velocity field
in a plane normal to this vector, they show that the velocity distribution around the
vortex centre is well fitted by a Burger’s vortex. The maximum tangential velocity is
of the order of 0.5 to 0.6 urms and the circulation scales with η and urms whatever the
wall distance is. Consequently, the diameter and tangential velocity of the eddies are
correlated.

Beside this work performed in Japan, which is part of a broader study of fine-scale
eddies in turbulence (Tanahashi et al. 1997, 2001), there has been a joint effort for
several years by Stanford, Urbana Champaign and Madrid Universities to perform
and analyse high-Reynolds-number DNS of channel flow (Jimenez et al. 2004; del
Álamo et al. 2006; del Álamo & Jimenez 2006). The most recent paper of this group
summarizes their main results and understanding of the vortical organization in the
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logarithmic layer. From the analysis of five different DNS with a range of Reτ from
180 to 1900, they were able to assess the main characteristics of the vortical structures
present in the wall layer. To identify the vortices, they use the discriminant criterion of
Chong, Perry & Cantwell (1990), but with a variable threshold based on the local value
of the standard deviation of this discriminant. This allows them to extract a volume
fraction of vortices that does not depend on Reynolds number. Vortices are defined
as connected sets of points satisfying the above criterion, and spanwise vortices are
those having their vorticity vector forming an angle of less than 30◦ to the spanwise
direction. These spanwise vortices are characterized by fitting an elliptical Gaussian
vortex on an (x, y) cut (streamwise/wall-normal plane). Scaling the results with η and
urms shows Reynolds-number invariance and good agreement with a previous study
by the same group, using the same vortex model for isotropic turbulence (Jimenez
& Wray 1998). In contrast, the agreement with Tanahashi et al. (2004) is not so
good. The vortices are 20% thinner, which may be explained by a different definition
of the diameter, but twice as strong, which is justified by the authors based on the
fact that they detect only the strongest vortices with their method. Examining the
distribution in space of these vortices, they identify two types of vortex clusters:
small individuals detached from the wall; and tall objects attached to the wall. The
wall-detached clusters cover a wide spectrum of shapes having some similarity with
isotropic turbulence and scaling with Kolmogorov scales. The tall attached objects
are rooted around y+ = 20 and show self-similarity. The average structure obtained
by scaling individual ones on their height coincides with the image of a large-scale
hairpin, but individuals are much more complex. Very long regions of low streamwise
velocity are identified downstream of these tall clusters. The angle with the wall of
these vortices varies from 12◦ near the wall to 90◦ at the top with an overall angle
around 45◦. New clusters seem to appear at the upstream edge of older ones and
their spreading in space seems mostly linked to diffusion by background fluctuations.
Finally, the estimated lifetime of these clusters appears too short for them to grow
from the wall, indicating that some may be generated directly in the log layer.

As can be seen, by giving access to the full three-dimensional fields of primitive
variables, promising and comprehensive results can now be extracted from DNS,
bringing important insights into the structure of turbulent flows. Nevertheless,
although significant progress has been achieved in the last ten years, the Reynolds
number is still far from practical application in, for example, the field of
aeronautics. Consequently, these numerical contributions must be complemented
by experiments which are much more restricted in terms of the data they can
assess, but which can be designed to reach high Reynolds numbers. Hopefully,
a detailed investigation of high-Reynolds-number flows, in which the logarithmic
region exists between the buffer layer and the wake region, has recently been
made possible, thanks to the development of advanced experimental techniques.
In particular, particle image velocimetry (PIV) has proved to be a reliable tool for
performing multi–point measurements in turbulent flows (Adrian 1991; Foucaut,
Carlier & Stanislas 2004), by providing two-dimensional velocity maps, the accuracy
of which is now well characterized and the statistics agree well with hot-wire
anemometry.

Adrian, Meinhart & Tomkins (2000b) were among the first to use PIV to investigate
streamwise–wall normal planes in a turbulent boundary layer. They performed
measurements for Reynolds number Reθ ranging from 930 to 6845. They showed
that hairpin vortices, identified by a vortex core located above the region of a strong
second-quadrant event, frequently occur in the outer region of the boundary layer.
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These structures were found to align coherently in the streamwise direction, forming
groups of vortices consistent with the hairpin packets highlighted by Zhou et al.
(1999) in their DNS of a channel flow. They proposed that these packets, originating
from the near-wall region, grow upwards in a ramp–like arrangement inclined at
an angle near 12◦, inducing a low-momentum region beneath the inclined interface.
They found that an important feature of the logarithmic region is the occurrence of
smaller hairpin packets in the environment of larger hairpin packets. Christensen &
Adrian (2001) showed statistical evidence of the presence of hairpin packets in the
outer region of turbulent channel flow at Reynolds number Reτ = 547 and 1764 also
from PIV measurements. They confirmed the 12◦ inclination angle from the wall of
the upper interface of the hairpin packets. Tomkins & Adrian (2003) used PIV to
investigate streamwise–spanwise planes (parallell to the wall) in the whole logarithmic
layer at Reθ = 1015 and 7705. Again, consistency with the hairpin packet model was
shown by the finding of streamwise elongated regions of low momentum, bordered by
vortices. In this work, spanwise length scales based on statistical analysis were found
to grow linearly with wall distance, suggesting that the coherent structures grow self-
similarly in time (in agreement with del Álamo et al. 2006). On the contrary, based
on the investigation of instantaneous fields, the scale growth mechanism appears to
rely on the merging or coalescence of vortex packets.

Ganapathisubramani, Longmire & Marusic (2003), by performing stereoscopic PIV
measurements in the same streamwise–spanwise plane, confirmed the existence of
such a large-scale organization. Two experimental studies repeated the experiment
of Head & Bandyopadhyay (1981), with the same inclined cross-stream light-sheet
configuration, but using PIV to obtain quantitative information on coherent structures.
The work of Carlier & Stanislas (2005) was focused on the eddy structures present in
the boundary layer at Reynolds numbers Reθ between 8000 and 19 000. For the range
of Reynolds number investigated, the characteristics of the educed vortices were found
to be universal in wall units, forming in the near-wall region and then moving away
from the wall. Above the buffer layer, the circulation of these eddy structures appears
nearly constant, resulting in a slow decrease of their vorticity and a slow increase
of their radius. Near the wall, results corroborate existing models and support the
universality of the mechanisms in this region. Hutchins, Hambleton & Marusic (2005)
limited their study to Reynolds numbers Reθ up to 7440. By investigating planes
inclined at both 45◦ and 135◦ to the streamwise axis, they highlighted the existence of
inclined eddies bordering low-momentum regions, with a non-negligible probability
of appearing in a counter-rotating pair in the 135◦ plane. In the outer region,
spanwise length scales appear to scale with the outer variables. The computation of
the two–point correlations of the longitudinal velocity component with respect to the
wall–normal distance reveals two regimes designated by the authors as ‘attached’ to or
‘detached’ from the buffer layer, which indicates that coherent structures progressively
decouple from the wall as they migrate away from it (in agreement with del Álamo
et al. 2006).

This investigation has been pursued by the same group (Ganapathisubramani et al.
2006) using a more sophisticated dual-plane PIV technique. This approach allowed
these authors to assess both the three components of the instantaneous velocity and
the full velocity gradient tensor in a plane parallel to the wall. The study was performed
in a turbulent boundary layer at Reθ = 2800 and at two wall distances corresponding
to the log region (y+ = 110) and the outer wake region (y/δ = 0.53). From these
data, they could extract both the instantaneous velocity and vorticity vectors. The
r.m.s. values of the vorticity agree well with the existing literature, showing that the
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velocity gradients are properly assessed. To detect the coherent vortices (the legs of
the hairpins), these authors used the swirling strength, which is now an accepted
criterion for this purpose (Chakraborty, Balachandar & Adrian 2005), in both its
three-dimensional and two-dimensional form. The analysis of the auto–correlation
of the signed swirling strength λ3D , coupled to a quadrant decomposition of the
vorticity vector projection in the (x, y)-plane, leads these authors to propose a model
of forward-leaning and backward-leaning Λ-shaped vortices. They also analyse in
detail the statistics of the angle of the vorticity vector associated with the coherent
vortices, with respect to the different coordinate planes. Putting aside by a proper
threshold the heads and the streamwise vortices, they show that the remaining vortices
have an average angle of ±38◦ with the wall ((x, z)-plane) at y+ = 110 and ±33◦ at
y/δ =0.53. This angle goes to ±45◦ when it is projected in the (x, y)-plane, which
is in good agreement with the literature. They detect a majority of forward-leaning
vortex filaments, especially in the log region, but also a non-negligible amount of
backward-leaning vortices, which are in comparable numbers at both locations. The
angle of these vortices with the (x, y)-plane (so projected in the (x, z)-plane) is of
the order of ±15◦, showing that these structures are (on average) more or less
aligned with the main stream, with a Λ shape in good agreement with the model
of Perry & Marusic (1995). In a concomitant investigation, Hambleton, Hutchins
& Marusic (2006) performed a PIV investigation of a turbulent boundary layer,
using two orthogonal StereoPIV planes at the same time. One plane was parallel
to the wall ((x, z)-plane) and the other normal to the wall and parallel to the flow
((x, y)-plane). The boundary layer was nearly the same as in the previous study
(Reθ = 2800). The horizontal plane was set again in the log region (y+ = 98). The
spatial resolution was 16 wu (wall units) in the (x, y)-plane and 17.5 wu in the (x, z)-
plane. The main interest of the study was in the use of linear stochastic estimation
(LSE, see Adrian & Moin 1988) conditioned by a positive swirling strength in the
vertical plane at y/δ = 0.19 (that is in the upper region of the log layer). The results
underline that ‘the time-averaged conditional event is an inclined hairpin structure,
with an inclination angle close to 45◦’. Between the legs of this conditional eddy,
the authors evidence a ‘pronounced elongated low-speed region’. The flow pattern
resulting from this analysis is in good agreement with the vortex packet model
of Zhou et al. (1999). The same analysis performed on an event of opposite sign
(retrograde vortex), shows, in the vertical plane and mostly in the outer part of the
boundary layer, a pair of counter-rotating vortices also forming an angle of 45◦ with
the wall. This second type of structure is nevertheless much less numerous than the first
one.

Finally, in the same vein as the studies by Adrian and colleagues, Wu & Christensen
(2006) have performed a thorough study of the Reynolds-number influence on the
spanwise vortices of both the channel flow and the turbulent boundary layer. They
used standard PIV in a plane normal to the wall and parallel to the flow ((x, y)-
plane). They took care to keep a sufficient and nearly constant resolution in wall
units (of the order of 10 wu) for the different Reynolds numbers, in order to ensure
the resolution of the smallest structures. Here again, they use the signed swirling
strength as a detection criterion and simply threshold this criterion to obtain the
area occupied by the vortices. In agreement with Carlier & Stanislas (2005), they
evidence a dense population of prograde and retrograde spanwise vortices, with the
progrades largely prevailing near the wall and decreasing with y for both flows and
at all Reynolds numbers. The retrograde population increases from the wall to the
top of the log layer and then decreases with y for boundary layers. Scaled in outer
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variables, the population density of both types of structure increases with Reynolds
number. The wall variable scaling also evidences Reynolds-number influence, but
opposite: the population density decreases with increasing Reynolds number in the
log layer. To compare the two populations, they defined a vortex population fraction
which appears universal in wall units up to the limit of the log layer and for high
enough Reynolds number (Reτ larger than about 1000). These authors also show
that these vortices, together with their immediate surroundings bring a significant
contribution to the mean shear, contribution which decreases with increasing Reynolds
number. Finally, Wu & Christensen (2006) analysed the advection velocity of the
spanwise vortices. In agreement with Carlier & Stanislas (2005), they found that
the mean advection velocity is equal to the local mean flow velocity, but they
evidenced a significant distribution around this mean. This distribution, which can
reach 30 % of the mean near the wall, decreases progressively to 10–15 % in the wake
region.

To summarize, there is a global convergence, both from DNS and experiments
toward a model of hairpin packets (Zhou et al. 1999) attached to the wall in the
lower part of the log layer and nearer to isotropic turbulence in the outer part.
The agreement is also fairly good on the quantitative characteristics (size, separation,
intensity, angles, etc.) of this model, but universal scaling is still unclear.

Concerning the buffer layer, because of its small size in standard facilities, very
few quantitative studies are available. Lin (2006) performed an extensive study of
this region. This work was done on data recorded in the same wind tunnel as in
the present study and for a Reynolds number Reθ =7800. Samples of 500 StereoPIV
velocity maps were available in ten planes parallel to the wall, regularly distributed
between 14 and 50 wu. Lin (2006) analysed the flow structure in detail, using spatial
correlation and pattern recognition. His results confirm that the spanwise spacing
of the streaks is about 120 wu and that the high-speed streaks are slightly larger
than the low-speed streaks. They put in evidence streamwise vortices located between
the streaks, the centre of which is located between 20 and 30 wu from the wall. An
important result of this study is that, in this buffer layer, the ejections and sweeps
are closely linked to the streamwise vortices. This leads to a simplification of the
organization picture in this region: the important structures are the streaks (low and
high) and the vortices which form between them. A paper is in preparation on this
study. The thesis is in English and available from M. Stanislas.

As can be seen, much progress has been made in the last few years in the detailed
description and understanding of the near-wall turbulence structure. Putting together
the results from the above-mentioned DNS and experiments, a fairly complete and
relatively quantitative view of the turbulence structure near the wall is provided:
hairpin-like quasi-streamwise vortices organize around elongated low-speed regions
with significant second quadrant events. It is clear, from this picture, that vortices play
a key role in this organization, but this role is not yet fully established. The aim of the
present paper is thus to investigate further the dynamics of coherent eddies present
in both the buffer layer and the logarithmic region of a flat-plate boundary layer, by
taking advantage of spatially well-resolved stereoscopic PIV measurements performed
in a plane normal to both the flow and the wall and of some advanced mathematical
tools. In particular, spanwise symmetry of the hairpin-shaped structures, scaling and
relationships between the vortical structures are addressed. Consequences of these
observations in terms of the scaling of the transport equation for the mean square of
the fluctuating vorticity are then looked at. Finally, in the discussion, the description
and scaling of the boundary layer itself are revisited.
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In the present study, two relatively high Reynolds numbers, Reθ = 7800 and
Reθ = 15000, for which a well-developed logarithmic region exists, are investigated
with SPIV. Swirling strength correlation and linear stochastic estimation are used to
analyse the flow organization linked to the vortices. A reliable criterion to extract
vortices in turbulent flows has been the subject of extensive discussions. The swirling
strength has been shown by Zhou et al. (1999) to be adequate and Chakraborty
et al. (2005) have shown that an analytical relationship exists between the different
existing criteria based on the gradient tensor, making them equivalent. Signed with
the vorticity sign, the swirling strength allows one to distinguish between positive and
negative rotating vortices, which is of interest in the present study. Linear stochastic
estimation was first introduced by Adrian & Moin (1988) and Adrian (1993) and
has been shown since then to be a useful tool for analysing the structure of various
turbulent flows, including near-wall flows (Guezennec 1989). The detection of eddy
structures from the PIV velocity fields used here is close to the approach of Das et al.
(2006). It is based on the computation of the two-dimensional swirling strength from
the available components of the velocity gradient tensor and on the vortex validation
method proposed by Carlier & Stanislas (2005) which fits an Oseen vortex model on
the detected vortices, providing quantitative characteristics of the validated vortices.

2. Experiment
The experimental set-up and the means of measurement employed in the present

study are briefly described in this section. Further details on the wind tunnel, its
characterization via extensive hot-wire measurements and the PIV set-up can be
found in Carlier (2001) and Carlier & Stanislas (2005).

Measurements were performed in a closed-loop wind tunnel, the test–section of
which is 21.6 m in length (along x), 1 m high (along y) and 2 m wide (along z). The
boundary layer develops along the flat lower wall of the wind tunnel which has a
constant cross-section. Consequently, a small pressure gradient exists which has been
quantified. The longitudinal axis x is parallel to the wall and to the mean flow, y is
the axis normal to the wall and the transverse axis is z. The instantaneous velocity
components u, v and w are associated to the x-, y- and z-axis, respectively. The ui, xi

notation will also be used in the present contribution; ui will be the instantaneous
velocity component, ui the mean value and u′

i the fluctuation.
For hot-wire anemometry, probes of boundary-layer type, with a diameter of 2.5 µm

and a length of 0.5 mm were employed by Carlier (2001) to investigate in detail the
turbulent characteristics of the flow. Constant temperature anemometers (AALab
Systems) were used to drive the hot-wires. The sampling frequency Facq and the
cutting frequency Fc of the low-pass filter were chosen on the basis of an estimation
of the Kolmogorov scales to ensure a proper resolution of all temporal scales (see
Carlier & Stanislas 2005 for details).

The stereoscopic PIV measurements were carried out by Kähler et al. (2000)
and are available in the WALLTURB database. They were recorded with a 2 ×
330 mJ BMI ND-YAG laser, with two synchronized PCO cameras (CCD array of
1024 × 1280 pixels) mounted in an angular configuration with Scheimpflug correction.
The interrogation window size used for the fast-Fourier-transform-based free-shape
cross-correlation analysis of images was 32 × 32 pixels with 50% overlap. The main
characteristics of the two PIV experiments that were performed are summarized in
table 1. The spatial resolution given in this table is the grid spacing. It should be
noted here that, as a difference from the results of Carlier & Stanislas (2005), the
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Reθ 7800 15 000

Field of view 750+ × 492+ 1 631+ × 1 070+

93 × 61 mm2 93 × 61 mm2

Spatial resolution 5.4+ × 5.4+ 11.6+ × 11.6+

0.66 × 0.66 mm2 0.66 × 0.66 mm2

Number of fields 2940 2100
Number of vectors per field 141 × 93 141 × 93

Table 1. PIV experiments characteristics.

Ue P, x uτ u∗ δ δ+ θ Reθ l+ d+

(m s−1) (Pa m−1) (m s−1) (m s−1) ( m) – ( m) – – –

3 −0.065 0.115 0.111 0.35 2 680 0.041 8 171 4. 0.02
5 −0.151 0.183 0.184 0.32 3885 0.034 11 454 6. 0.03
7 −0.247 0.249 0.252 0.30 4 941 0.031 14 505 8.5 0.04

10 −0.528 0.354 0.348 0.30 7 164 0.031 20 831 12 0.06

Table 2. Turbulent boundary-layer characteristics: Ue , external velocity; P, x, streamwise
pressure gradient; uτ , wall friction velocity from macroPIV (Foucaut et al. 2006); u∗, wall
friction velocity from Clauser plot; δ, boundary-layer thickness; δ+ = δ.uτ /ν; θ , boundary-layer
momentum thickness; Reθ = Ueθ/ν, Reynolds number based on momentum thickness; l+,
length of hotwires in wu d+diameter of hot wires in wu.

fields of view retained in the present study cover most of the logarithmic layer, for
both Reynolds numbers. It should also be noted that the field of view in physical
units was kept constant in these experiments. Consequently, the spatial resolution in
wall units is different in both cases. From table 1 and based on the Nyquist criterion,
we can expect to resolve, at best, vortices of 10 and 20 wall units in diameter at Reθ =
7800 and 15 000, respectively.

3. Hot-wire anemometry
Although the hot-wire data have already been presented in Carlier & Stanislas

(2005), some new information on the wall friction has been made available since
then, which justifies revising them. The estimation of the pressure gradient was also
slightly improved, together with the different integral thicknesses. Besides, for the
purpose of the present analysis, it is of interest to look at higher-order moments and
at dissipative scales which were not shown by these authors.

Carlier & Stanislas (2005) obtained the wall friction velocity u∗ with an accuracy
of the order of 2% from a Clauser plot of the log layer of the velocity profile, using
κ = 0.41. Foucaut, Stanislas & Kostas (2006) measured the skin friction (and thus the
friction velocity uτ ) at the same location and for the same Reynolds numbers using
a macroPIV method. The accuracy of the macroPIV measurements is of the order of
1% on the friction velocity at the three lowest Reynolds numbers and of 1.5% at the
highest one.

The main characteristics of the boundary layer are summarized in table 2. The
kinematic viscosity was ν = 15.0 × 10−6 m2 s−1 for all four cases thanks to the
temperature regulation of the wind tunnel. For the sake of simplicity, test cases
will be referenced by their rounded Reynolds numbers (i.e. 8200, 11 500, 14 500 and
20 800) in the following. Table 2 gives also the length l and diameter d of the hot
wires used (respectively, 0.5 mm and 2.5 µm) in wall units. The spatial resolution can
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Figure 1. θ+ as a function of Reθ . Comparison between friction velocity u∗ (�) deduced from
the Clauser plot with κ = 0.41 and uτ (�)deduced from macro PIV measurements near the
wall.

be deduced from these data and compared with that of PIV in table 1 for both single
and cross hot-wire measurements.

Figure 1, by plotting θ+ ( = uτ θ/ν or u∗ θ/ν) as a function of Reθ =Ueθ/ν, compares
the two estimations of the friction velocity, uτ and u∗. The error bars are 1% for the
PIV measurements and 2% for the Clauser plot using κ = 0.41. The agreement
is within the uncertainty, except at the lowest Reynolds number. This should be
attributed to the estimation of u∗, as this velocity profile is not the best of the three
near the wall, probably owing to some influence of free convection and the difficulties
in calibrating hot wires at the lowest velocities (less than 1 m s−1). Nevertheless, the
agreement is fairly good and gives some confidence in the estimation of uτ for later
scaling.

The mean velocity profiles are not plotted again. They are provided in Carlier
& Stanislas (2005) and do not change significantly when using uτ instead of u∗ for
scaling.

Figure 2 gives the pressure coefficient Cp =P/(1/2)ρU 2
e along the wind tunnel

(symbols) together with the fit performed to estimate the pressure gradient (lines).
The slope of the lines gives the effective pressure gradient. The values are slightly
different from Carlier & Stanislas (2005) as here the first two points at the entrance
of the test section were not taken into account to make the fit, as they appear to be
slightly influenced by the upstream contraction. As can be seen, in most of the wind
tunnel, the pressure gradient can be considered as constant. The level of this pressure
gradient has already been shown to be fairly small (Carlier & Stanislas 2005).
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Figure 2. Pressure distribution along the wind tunnel at four values of external velocity:
3m s−1(∗); 5 m s−1(�); 7 m s−1(�); 10 m s−1(�); lines correspond to the pressure gradient
estimation given in table 2.

Figures 3 and 4 show, respectively, the skewness and flatness factors, in wall scaling
(uτ , ν) and logarithmic representation. Apart for the lowest Reynolds number, which
shows slightly different values of skewness (probably due to the lower value of Reθ),
these two parameters appear fairly universal in both the near-wall and the external
regions, using the corresponding scaling. Both are fairly constant in the log layer,
with respective values near 0 and 3 corresponding to the Gaussian standards. In the
wake region, the intermittency is clearly visible. The very near-wall behaviour is of
interest. Near the wall, measurements of both parameters start from high positive
values, indicating strong intermittency. They decrease very rapidly, showing both a
minimum which is at y+ � 30 for S(u) and y+ � 13 for F (u). A small maximum
appears at y+ � 120 for S(u) and y+ � 50 for F (u). Putting aside the viscous sublayer
and the log layer which show monotonous behaviour, it is clear from these figures
that the buffer layer is a place of very strong and rapid changes in the physics of the
flow.

In order to perform a proper scaling of the different quantities analysed in the
present study, it is of interest to look at the dissipation rate of turbulent kinetic energy
ε and at the corresponding length scales. There are different ways of estimating ε

from hot-wire measurements (Pope 2000). Owing to the characteristics of the hot-wire
signal (measurement noise), these methods are not equivalent. Some of them were
tried here. The method using the dissipation spectrum (ε = 15ν

∫ ∞
0

E11k
2 dk) does not

work well because the multiplication by k2 amplifies the high-frequency noise. The one
based on the time derivative of the velocity fluctuations does not work either, owing
to the transfer function of the derivative filter (this has been studied in detail for
PIV by Foucaut et al. 2004). The method based on ε = 30ν(u′(y))2/λ1(y) (with λ1(y)
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(∗); Reθ = 11 500 (�) Reθ = 14 500 (�) Reθ =20 800 (�).
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being the Taylor micro scale of the streamwise velocity component) was retained. The
Taylor microscale is defined as:

λ1(x) =

√√√√√ −2

∂2R11(x, x + dx)

(∂ dx)2

∣∣∣∣
dx = 0

, (3.1)

where R11(x, dx) is the correlation coefficient between the velocity fluctuation
components u′(x) and u′(x + dx). A local Taylor hypothesis, based on the local
mean velocity of the flow is employed to compute λ1 directly from the temporal
correlation coefficient. The second-order derivative involved in (3.1) is computed via
a fourth–order centred scheme. With this method, the noise, which is incoherent,
affects only R11(x, x + 0) and does not perturb the estimation of λ1.

The distribution of ε across the boundary layer is plotted in figure 5 both in mixed
(εδ/u3

τ ) and wall (εν/u4
τ ) scalings. As expected, the peak of ε is at the wall. The

dissipation decreases very rapidly with wall distance, with most of it occurring in
the viscous and buffer layers. In these two figures are also plotted for comparison the
data of Hoyas & Jimenez (2006) from a channel flow DNS at Reτ = uτh/ν = 2003
(with h � δ). A fairly good agreement is obtained in mixed representation and a
certain degree of universality develops when the Reynolds number is high enough
(Reθ above 11 500). In wall unit representation, the dissipation is obviously Reynolds-
number dependent and the agreement is not so good between experiments and DNS
(in particular, very near to the wall). This can be explained by two facts: (i) The
method used to determine ε is fairly different. In DNS the full expression of ε is used
directly whereas in the experiment, this quantity is determined from the fluctuations
of one single velocity component, on the basis of an isotropy hypothesis. (ii) The
Reynolds number of the DNS is lower than in the experiments. Although δ+ is not
so different from Rτ (2680 for the lowest boundary-layer (BL) Reynolds number
compared to 2003 for the DNS), the ratio Uc/uτ is 2.43 in the DNS while Ue/uτ is
27 at the lowest Reynolds number of the experiments. It is difficult to quantify the
relative contribution of these two sources of bias, but at least the results are coherent
and the experimental results which will be used later are determined with the same
method.

The wall-normal evolution of λ1, from which ε is computed, is given in wall units
in figure 6(a). This parameter shows a slight Reynolds-number dependence in this
representation. This dependence is much stronger when plotted in external units
(λ1/δ = f (y/δ), not shown). Here, the near-wall region can be divided roughly into:
y+ < 10; 10 < y+ < 100; 100 < y+. In the intermediate ‘buffer layer’, where the rapid
changes in S(u) and F (u) occur, this micro scale appears fairly constant. In the two
other regions, a monotonous increase with wall distance is observed, with a global
variation of about one order of magnitude over the whole BL thickness.

From the dissipation, the Kolmogorov length scale η can be estimated as
η = (ν3/ε)1/4. Figure 6(b) shows the wall-normal evolution of η scaled in wall-
units for both Reynolds numbers. This quantity exhibits good universality in the
region investigated and compares well, in the logarithmic region, with the power law
η+ = (κy+)1/4 (where κ = 0.41 is the Kármán constant) resulting from the balance
between production and dissipation (Pope 2000). This length scale does not show
universality in external scaling (not shown).
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Figure 5. Wall-normal evolution of the dissipation ε in (a) external and (b) inner scaling.
Reθ= 8200 (∗); Reθ = 11 500 (�); Reθ = 14 500 (�); Reθ= 20 800 (�); DNS Reτ = 2 000 (Hoyas &
Jimenez 2006) (—).

4. Statistical analysis of swirling motion
The proposed statistical analysis of the swirling motion existing in the (y, z)-plane

is based on the use of the swirling strength λci . It is shown by Zhou et al. (1999),
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and (b) the Kolmogorov scale η+ at Reθ =8200 (∗); Reθ =11 500 (�); Reθ = 14 500 (�); Reθ =
20 800 (�).

Adrian et al. (2000a) and Chakraborty et al. (2005) that λci , which is the imaginary
part of the complex eigenvalue of the velocity gradient tensor, is an efficient vortex
core identification criterion. As proposed by Tomkins & Adrian (2003) and Hutchins
et al. (2005), λci is here multiplied by the sign of the streamwise vorticity component
ω1. Thus, λs = λciω1/|ω1| is formed to discriminate counter-clockwise rotating vortices
(λs > 0) from clockwise ones (λs < 0). Hutchins et al. (2005) demonstrated that this
criterion, computed from a two-dimensional velocity field, can successfully detect
vortex cores cutting the measurement plane, even at an oblique angle. Thus, analysis
of the swirling strength in the (y, z)-plane is expected to provide reliable information
on hairpin vortex legs. In the present study, velocity gradients are computed by
using a second-order centred difference scheme which presents a transfer function
comparable to the PIV one (Foucaut et al. 2004). Only results obtained at Reθ =
7800 are presented in this section.



Vortical structures in a turbulent boundary layer 341

(a)

�λci�

5004003002001000

0.02

0.01

(b)

y+

y+

∆y+
2001000–100–200

500

400

300

200

100

0

+
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swirling strength, Rλsλs
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4.1. Wall-normal organization

Wall-normal evolution of the mean swirling strength 〈λ+
s 〉, where 〈.〉 denotes the

ensemble-averaging operator both in the homogeneous z-direction and over all the
acquired velocity fields, is shown in figure 7(a). The flow exhibits a strong streamwise
oriented swirling activity in the near-wall region (e.g. for y+ < 100 to 150), which then
decays slowly with the distance from the wall. These results are in good agreement
with those of Hutchins et al. (2005) and those from Carlier & Stanislas (2005) who
detected vortices in a plane inclined at an angle of 45◦ upstream by using a pattern-
recognition technique. They confirm that the two-dimensional swirling strength in the
(y, z)-plane correctly captures the vortices related to the coherent structures of the
turbulent boundary layer.
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In order to analyse in more detail the vortex organization, following Christensen &
Adrian (2001) and Wu & Christensen (2006), the two-point correlation tensor of the
signed swirling strength is computed as:

Rλsλs
(y, �y, �z) =

〈λs(y, z)λs(y + �y, z + �z)〉
σλs

(y)σλs
(y + �y)

, (4.1)

where σ is the r.m.s. of the given quantity. If the coherent structures present in the flow
show any spatio-temporal organization of statistical importance, this organization
should leave its imprint on the two-point statistics.

Figure 7(b) illustrates Rλsλs
obtained for �z = 0, at Reθ =7800. The correlation

pattern is dominated by a narrow central peak of quasi-constant width at �y = 0,
∀y, which corresponds to the presence of a single vortex. Negative correlation levels,
comprised between 0 and 5%, can be observed in the region y+ < 150. Vortices
located in this region are weakly correlated with counter-rotating vortices located
above them (�y+ > 0). In the same manner, correlation also exists between vortices
of this region with counter-rotating eddies located below them. Thus, two regions
can be distinguished, one, for y+ < 150, of stronger interaction between vortices and
strong swirling activity and another above, where vortices appear to be more isolated
from a statistical point of view. In order to analyse in more detail the shape of this
correlation, it was computed with a condition on the sign of the swirling strength.
Figure 8 shows the same correlation as in figure 7(b), but conditioned on the sign of
the swirling strength. Figure 8(a) gives:

Rλsλs
for λs(y, z)λs(y + �y, z + �z) > 0,

while figure 8(b) gives:

Rλsλs
for λs(y, z)λs(y + �y, z + �z) < 0.

In figure 8(a), only one peak is visible at �y = 0, indicating no correlation between
vortices of the same sign in the wall normal direction in the whole field of investigation.
Moreover, the nearly constant width of this peak along y is remarkable and indicative
of the nearly constant size of these structures. This result is in good agreement with
the findings of Carlier & Stanislas (2005) using pattern-recognition methods. In
figure 8(b), the negative correlation areas above and under the reference vortex are
more visible, indicating clearly that counter–rotating vortices can be found both above
and under the reference vortex. The local extrema observed on both sides of �y+ = 0
seem to indicate that when a vortex is travelling under y+ =150, there is a higher
chance that a counter-rotating one forms near the wall under it. This result supports
the idea of new vortices developing near the wall along the legs of an hairpin (Adrian
2007).

Figures 9 shows profiles of the correlation map of figure 7(b), obtained at constant
y+ to look in more detail at the shape of the correlation tensor. Negative levels
indicate the statistical predominance of interactions between counter-rotating vortices.
In the present case, as �z+ = 0, counter-rotating vortices would be located one above
the other. Therefore, its seems obvious that these pairs of vortices are not part of the
same hairpin–shaped structure, but rather-distinct coherent structures interacting in
the near-wall region. They can be linked to the packets of vortices found by several
workers along low-speed regions (Ganapathisubramani et al. 2003; del Álamo et al.
2006).

As can be seen in figure 7(b) and more clearly in figure 9(b), spatial organization
in the y-direction of the in-plane swirling motion is clearly different below and above
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Figure 8. Spatial correlation of the signed swirling strength, Rλsλs
(y+,�y+,�z+ = 0),

conditioned by the sign of the swirling events: swirling events of (a) the same sign and
(b) of opposite signs at the reference point and the moving point, at Reθ =7800. Contour
levels and increments and line type are the same as in figure 7, except for the lowest level
being −0.07.

y+ =150. The statistical imprint of the interaction of counter–rotating vortices is
no longer present in Rλsλs

above y+ = 150. Only one peak of self-correlation can
be seen, corresponding to the statistical dominance of a single vortex of streamwise
vorticity. The evolution of the shape of the correlation profiles, which exhibit two
slight secondary ‘plateau’ located on each side of the correlation maximum, may be
attributed to a change in shape of the vortices. However, this point remains to be
further investigated.

4.2. Spanwise organization

Profiles of the spatial correlation Rλsλs
as a function of the spanwise separation �z+,

at various wall-normal locations y+ and for zero wall-normal separation (�y+ =
0) are illustrated in figure 10(a). It should be noted here that the symmetry of
the correlation tensor in the spanwise direction is due to the homogeneity of the
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Figure 9. Profiles of spatial correlation of signed swirling strength, Rλsλs
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for (a) y+ = 30, 46, 58 and 79 and (b) y+ = 200, 300, 400 and 450, at Reθ = 7800.

flow in this direction and does not reflect any particular symmetry of the coherent
structures. Again, the shape of the correlation profiles varies with the wall-normal
location considered. Below y+ � 150, negative extrema of correlation exist on each
side of the self-correlation peak, the level of which is less than 5%. This negative
correlation is indicative of counter-rotating vortices beside the reference one in the
near-wall region. The spanwise distance between the central peak and a negative
extremum is approximately 50 wall-units at y+ = 50. This distance corresponds well
to the spanwise spacing of counter-rotating vortices found by Hutchins et al. (2005)
in their conditional analysis of swirling motion at the same height. Moreover, this is
consistent with the ‘low-speed streaks’ width computed for y+ � 50 by Stanislas et al.
(2005) (see also Lin 2006) in their experimental study based on PIV measurements
in streamwise–spanwise planes at similar Reynolds number. Thus, this result is in
agreement with the picture of hairpin vortices consisting of two legs, located on
each side of a low-momentum region. However, the low level of correlation supports
the idea that hairpin-shaped structures are predominantly asymmetric structures, as
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found by Choi & Guezennec (1989), Guezennec et al. (1989) and Robinson (1991)
in DNS of low- Reynolds-number wall-bounded flow. For y+ � 100, inspection of
the correlation patterns (not shown here) at larger spanwise separation exhibited no
particular organization (Rλsλs

is zero for �z+ � 100). This point is consistent with the
picture of asymmetric vortices.

In the region located above the buffer layer, profiles of Rλsλs
(�z+ = 0) show the

same shape as found for Rλsλs
(�y+ = 0). Secondary peaks of positive correlation, at

�z+ � 25 on each side of the central peak are retrieved, indicating that this length
scale is statistically characteristic of the vortex core size. This is confirmed by the
fact that, in this region, the correlation tensor exhibits good isotropy: profiles of
Rλsλs

(y, �y, �z = 0) match closely those of Rλsλs
(y, �y = 0, �z) (figure 10b).
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4.3. One-point LSE of a swirling event

The conditional velocity field in the (y, z)-plane, given a swirling event of streamwise
vorticity at a reference point is estimated here using the linear stochastic estimation
(LSE) (Adrian & Moin 1988). In this case, the conditional velocity field 〈ui(yref +
�y, �z)|λs(yref , 0)〉 is approximated in a linear fashion by

〈ui(yref + �y, �z)|λs(yref , 0)〉 � Liλs(yref , 0), (4.2)

where

Li =
〈ui(yref + �y, �z)λs(yref , 0)〉

〈λs(yref , 0)2〉 (4.3)

is derived from the minimization of the mean-square error between the estimate and
the conditional average. As the one-point conditional event LSE is simply a function
of the two-point correlation tensor, the spatial structure of the estimate does not
depend on the intensity of the conditional event and a change of sign of the reference
signal will result only in a change of sign of the estimated field.

Figure 11 shows the velocity field estimated by LSE at two reference heights
y+

ref = 50 and 300. In both cases, the estimate associated to a positive swirling strength
event depicts a counter-clockwise rotating vortex core, the axis of which is more
or less normal to the investigated plane, bordered by low- and high-momentum
regions on the right- and left-sides respectively. This picture is fully consistent with
an asymmetric hairpin structure and with the mean picture obtained by Carlier &
Stanislas (2005) with conditional pattern-recognition techniques. If the most probable
vortex organization was a more or less symmetric hairpin, and according to the flow
homogeneity in the spanwise direction, we would have expected three counter-rotating
vortex cores, one on each side of the central vortex, symmetrically distributed along
the z-direction. Thus, the estimated conditional velocity field seems to support the
idea that statistically predominant vortical structures in the turbulent boundary layer
are ‘one-legged’ hairpins or ‘cane’ vortices. It also implies that interactions between
counter-rotating vortices found in previous sections (figures 9a and 10a) in the
near-wall region for y+ < 150 are not statistically significant in a least-squares sense.

Besides, figures 11(a) and 11(c) clearly show that swirling events are linked to
regions of low- and high-streamwise velocity. This is particularly marked near the wall
and much more loose in the log layer. The dominant spatio-temporal organization
corresponding to these results is, for instance, counter-clockwise rotating (λs > 0)
vortices bordering a low-momentum region located on their right-hand side and
clockwise rotating (λs < 0) vortices with low momentum region on their left-hand
side, when looking in the x > 0 direction. This is in good agreement with the findings
of Tomkins & Adrian (2003). In spite of the lower statistical convergence of the
correlation at large �z, the correlation length associated to a given correlation
level increases as the reference point moves away from the wall. Thus, vortices are
obviously associated with wider and wider regions of coherent longitudinal velocity
with increasing wall-distance, consistently with the structure and scale growth found
in the spanwise direction by Tomkins & Adrian (2003) and Ganapathisubramani
et al. (2005).

Conversely, it appears that the characteristic size of the vortex core evolves less
rapidly with the wall-normal distance than the width of the regions of constant
longitudinal velocity. To clarify this point, the radius of the vortex associated to the
linear estimates has been computed by fitting an Oseen vortex model (see (4.4)) to
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Figure 11. One-point linear stochastic estimation of the velocity field in the (y, z)-plane
conditioned by a positive swirling strength event of magnitude 〈λci(yref )〉 located at (a, b)

y+
ref = 50 and (c, d ) y+

ref = 300. Contours (a, c) show conditioned streamwise velocity in

increment of (a) 0.03uτ and (c) 0.013uτ (negative contours are dashed); Reθ = 7800.

the estimated velocity field in the (y, z)-plane:

u(r) − u0(x0) =
Γ0

2πr

[
1 − exp −

(
r

r0

)2
]

· eθ , (4.4)

where u is the velocity vector in the (y, z)-plane, r = x − x0 is the position vector
in this plane, r is the modulus of r and eθ is the tangential unit vector in polar
coordinates. The circulation Γ0, the radius r0, the position vector of the centre x0

and the convection velocity u0 are the fitted parameters of the model. The vorticity
at the eddy centre is calculated as ω0 = Γ0/(πr2

0 ). Figure 12 shows the evolution of
the estimated radius as a function of the wall-normal distance. As found by Carlier
& Stanislas (2005), the mean radius of the vortices slowly increases for y+ > 100,
consistently with the analysis of Rλsλs

performed in § (4.2). The value of this radius is
also in fair agreement with previous studies.
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function of the wall-normal location; Reθ = 7800.

4.4. Two-point LSE

Given the strong correlation level that exists between a swirling event and regions
of coherent (high or low) streamwise velocity near the wall (see figure 11a) and to
overcome the fact that the spanwise homogeneity of the flow can hide some specific
features of the coherent structures, relationships between a vortical event and a region
of coherent streamwise velocity are now investigated via a two-point linear stochastic
estimation approach. The formalism of the linear stochastic estimation allows one
to estimate the conditional average of the velocity field under multiple conditions
at different locations. In the present case, it is proposed to estimate the velocity
field in the plane of measurement when a negative fluctuating streamwise velocity
event occurs at y+ = 30 together with a positive swirling strength event at y+ = 50
and �z+ = −26, namely 〈ui(y, �z)|u1(y

u
ref , 0), λs(y

s
ref , �zs

ref )〉. This corresponds to the
presence of a low-speed streak bordered on its left-hand side by a vortical structure,
as underlined in figures 11(a, b). Here, the conditional average 〈ui(y, �z)|uref

1 , λref
s 〉 of

the velocity field under two conditions u
ref
1 and λref

s is approximated by〈
ui(y, �z)

∣∣uref
1 , λref

s

〉
� ũi(y, �z) = Lu

i u
ref
1 + Ls

iλ
ref
s , (4.5)

where

Lu
i =

〈
ui(yref + �y, �z)λref

s

〉〈
u

ref
1 λref

s

〉
−

〈
ui(yref + �y, �z)uref

1

〉〈
λref

s

2〉〈
u

ref
1 λ

ref
s

〉2 −
〈
u

ref
1

2〉〈
λ

ref
s

2〉 (4.6)

and

Ls
i =

〈
ui(yref + �y, �z)uref

1

〉〈
u

ref
1 λref

s

〉
−

〈
ui(yref + �y, �z)λref

s

〉〈
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1
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ref
1 λ

ref
s

〉2 −
〈
u

ref
1

2〉〈
λ

ref
s

2〉 (4.7)

are derived from the minimization of the mean-square error between the estimate
and the conditional average. Contrary to the one-point linear estimate, it can be seen
that the sign of the chosen conditions plays an important role on the structure of the
result.
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To obtain the stochastic estimation of the velocity field for a range of reference
parameter (swirling strength and longitudinal velocity) values, e.g. u

ref
1 < kuσu and

λref
s > kλσλs

where ku and kλ are some thresholds, u
ref
1 and λref

s in (4.5) are replaced by
the appropriate conditional moments deduced from the probability density functions
pdf(u′

1) and pdf(λs), respectively:

〈
u

ref
1

∣∣uref
1 < kuσu

〉
=

∫ kuσu

−∞
u

ref
1 pdf

(
u

ref
1

)
du

ref
1∫ kuσu

−∞
pdf

(
u

ref
1

)
du

ref
1

(4.8)

and

〈
λref

s

∣∣λref
s > kλσλs

〉
=

∫ +∞

kλσλs

λref
s pdf

(
λref

s

)
dλref

s∫ +∞

kλσλs

pdf
(
λref

s

)
dλref

s

(4.9)

Thus, linear estimates of the velocity field can be obtained, corresponding to a range
of reference events. As proposed by Carlier & Stanislas (2005), negative velocity events
of amplitude greater than σu are considered to be representative of the presence of a
low-speed streak. Consequently, a threshold ku = − 1 is retained.

Two values of the threshold kλ = 0 and kλ = 1 are investigated to analyse the
influence of the intensity of the reference vortical event retained to perform the
estimation of the velocity field. In the first case, all swirling strength events are
retained whereas in the second one, only the strongest ones are considered.

Figures 13(a) and 13(b) present the two-point linear estimate of the in-plane
velocity components obtained for ku = −1, kλ = 0 and ku = −1, kλ = 1 respectively. In
both cases, the obtained velocity field corresponds to a single vortex centred at the
location of the reference swirl event, bordering the low-speed region. The combination
ku = −1, kλ = 0 (figure 13a) corresponding to the more general case that can occur (e.g.
a low-speed streak bordered by a streamwise vortical structure with no restriction on
its intensity) shows that the most representative coherent structure is asymmetric with
respect to the vertical axis (corresponding to a cane-shaped vortex). The presence of a
stronger vortex (ku = −1, kλ = 1, figure 13b) does not lead to important modifications
of the organization of the estimated flow field. Results obtained from a two-point
linear stochastic estimation are then fully consistent with previous results based on
the analysis of the two-point correlation tensor and of the one-point linear stochastic
estimation and correspond to the cane model of asymmetric vortical structures in the
near-wall region as proposed, for example, by Robinson (1991). Figure 14 reproduces
figure 4 from Guezennec et al. (1989), who analyse the flow structure linked to strong
Q2 and Q4 events in a DNS of channel flow at Reτ = 180. Figure 14(a) shows the
result obtained with a simple ensemble averaging based on a threshold on Q2. A
symmetric vortical structure is clearly evidenced. Figure 14(b) shows the same result,
but with a condition on the strength of one vortex with respect to the other. The
similarity between this pattern and the one shown by figure 13 is clear. Although the
size of the structure obtained is not the same, owing to the different approaches used,
the educed structure is exactly the same. Moreover, these authors come to the same
conclusion as here: this vortex is bordered by a Q2 on its right-hand side and a Q4
on the left.
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Figure 13. Two-point linear estimate of the velocity field in the plane (z, y) with a negative
longitudinal velocity event with ku = −1 at y+ = 30, �z+ = 0 (×), and a positive swirling
strength event at y+ = 50, �z+ = −26 (+) for (a) kλ = 0 and (b) kλ = 1; Reθ = 7800 (vectors:
in-plane velocity components; grey-scale contours: longitudinal velocity component).

5. Vortex extraction
5.1. Vortex characteristics

To clarify previous results based on the analysis of the two-point correlation function
of the signed swirling strength λs and to bring additional quantitative information on
the vortices, the eddy-structure validation method implemented by Carlier & Stanislas
(2005) is employed here. They proposed to validate the detected vortices (from the
computation of a detection function such as vorticity, swirling strength or a pattern-
recognition analysis) by fitting an Oseen vortex model (equation (4.4)) to the velocity
field surrounding the detection peak (this is very close to the approach of (Das et al.
(2006)) who fitted a Burgers vortex model to their three-dimensional DNS data). In
the present study, the detection function is based on swirling strength maps that have
been smoothed by a sliding average filter to eliminate the derivation noise (7 × 7 and
3 × 3 for Reθ = 7800 and 15 000, respectively). Thus, this method allows one to count
the vortices existing in the velocity maps of the investigated database and to evaluate
their individual position, size and intensity. In this section, results obtained at two
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Figure 14. Ensemble-averaged structures for the second quadrant event. (a) The conventional
averaging technique; (b) the modified averaging technique. [From Guezennec et al. (1989), with
permission of Physics of Fluids A.]

Reynolds numbers are presented. It should be noted here that, given the fact that
the same spatial resolution in physical units has been employed for both Reynolds
numbers, velocity fields acquired at the highest Reynolds number Reθ =15 000 are
not as well-resolved as those at Reθ = 7800, when the spatial resolution in wall-units
is considered. As shown in table 1, the spatial resolution is of the order of 5 wu at
Reθ = 7800 and 10 wu at Reθ = 15 000. This means that vortices smaller than 10 and
20 wu have no chance of being detected. Consequently, based on the results of Carlier
& Stanislas (2005) which showed that vortex characteristics scaled in wall-units are
almost Reynolds-number independent, statistics of the smaller scales obtained at the
highest Reynolds number in the present study will be biased by a low-pass filtering
effect (that is, toward the large scales). This fact has to be kept in mind and will be
recalled when needed. Despite this limitation, the analysis of the obtained datasets
provides valuable information on the characteristics of the eddy structures and their
scaling and will be detailed here.

In this section, vortex characteristics and their Reynolds-number dependence are
studied by computing probability density functions of different quantities. All these
distributions are computed as follows. Let g be the quantity under study, Ntot the
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total number of samples of g, and N(g) the number of samples of g with a value
between g and g + �g, the probability density function pdf(g) of g is computed by

pdf(g) =
1

�g

N(g)

Ntot

. (5.1)

By using this definition, the integral of the function pdf(g) over the interval of known
values of the quantity g is equal to 1. Thus, in the present study, the value of the
probability density function of the quantities of interest (the vortex radius, vorticity,
etc.) depends on the chosen scaling (e.g. wall-units or Kolmogorov scales). Moreover,
the bin value �g is taken to be 1/8 of the root mean square of g. Thus, the bin value
is not necessarily the same for the same sets of data in different representations.

5.1.1. Vortex location with respect to the wall

Figure 15 shows the probability density functions pdf(y+
0 ) and pdf(y0/δ) of the

wall-normal location of extracted vortices at both Reynolds numbers. Spanwise
homogeneity has been checked and is shown for Reθ = 7800 in figure 15(a) only
(symbols). As expected, the number of counter-clockwise rotating vortices is equal
to that of clockwise rotating ones. For both Reynolds numbers, it appears that the
near-wall region y+ < 150 is more densely populated than the log layer, where the
number of extracted vortices decreases slowly with wall distance. These results are
in agreement with those obtained with the swirling strength itself (figure 7a) and
with those of Carlier & Stanislas (2005). They also agree with the trends exhibited
by the vortex population densities computed by Wu & Christensen (2006) from
measurements obtained both in a turbulent boundary layer and a channel flow at
different Reynolds numbers. When scaled in wall units, the density of the prograde
spanwise vortices (e.g. vorticity of the same sign as the mean spanwise vorticity)
estimated by these authors is decreasing with both the wall-normal distance and the
Reynolds number. When plotted as a function of y/δ (figure 15b), distributions of
the wall-normal locations of vortices collapse well, suggesting a Reynolds-number
independence of the number of eddies in the log-layer in this representation.

5.1.2. Vortex radius distribution

The vortex validation method employed in the present study enables quantitative
study of the radius of the identified vortices. Figure 16 shows probability density
functions of the radius r+

0 as a function of the wall-normal distance for the two
Reynolds numbers. These statistics were computed by taking into account eddies
contained in layers of 20 wall-units in height to improve the statistical convergence.
At both Reynolds numbers, very near the wall, the width of the distribution as well
as the peak value increase slightly with wall-normal distance and then stabilize for
y+ > 150. This behaviour is different from that observed by Tanahashi et al. (2004)
in a channel DNS. These authors agree with the present behaviour for y+ > 150, but
they observe a slight increase of the radius when approaching the wall. In the present
analysis, the largest radius of the detected vortices does not exceed 60 wall units.

These probability density functions, for the two Reynolds numbers, are
superimposed in figure 17. The p.d.f. obtained by Carlier & Stanislas (2005) on
the whole BL at Reθ = 7500 is also plotted for comparison. Although the number
of samples was much smaller in that experiment, the p.d.f. agrees fairly well with
the present results at Reθ =7800 (taking into account the uncertainty on the friction
velocity which is about 4% in Carlier & Stanislas 2005). The present data show that
the radius distribution depends weakly on the wall-normal location throughout the
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Figure 15. Probability density function of the wall-normal location of extracted vortices, (a)
in wall unit and (b) normalized by the boundary-layer thickness δ, at (solid line) Reθ =7800
and (dashed line) Reθ = 15 000. (In a: �, counter-clockwise rotating vortices; �, clockwise
rotating vortices, at Reθ = 7800).

log layer. The shape does not change much with the Reynolds number, but a shift of
the mean value is clearly visible.

This is confirmed by figure 18 which gives the mean radius, in wall units, as a
function of the wall distance. Here again, the data for the two Reynolds numbers
are given, together with the results of Carlier & Stanislas (2005) for comparison.
These correspond to measurements in a transverse plane inclined at 45◦ upstream,
for four values of the Reynolds number, and to measurements in the (x, y)-plane
at Reθ = 7500. The present results at Reθ = 7800 in the (x, z)-plane agree fairly well
with those of Carlier & Stanislas (2005) in the (x, z)-plane at Reθ =7500. It must be
noted that the recording conditions of these two sets are fairly comparable (pixel size,
interrogation window size and spatial resolution are very similar). Comparatively,
the results of Carlier & Stanislas (2005) in the upstream tilted plane were obtained
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Figure 16. Probability density functions of the radius r+
0 of the extracted vortices obtained

at various height at (a) Reθ = 7800 and (b) Reθ = 15 000.
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Figure 17. Probability density functions of the radius r+
0 of the extracted vortices obtained

in the logarithmic layer in wall unit scaling at Reθ =7800 (�) and Reθ = 15 000 (�); Carlier &
Stanislas (2005) (ex, ey) plane and Reθ =7500 (solid line).

with a comparable spatial resolution of 5 wu (the field of view was decreased when
increasing the Reynolds number), but with an older PULNIX TM9701 camera which
has bigger pixels (about twice as big, giving more peak locking) and is more noisy
(8 bits instead of 16 for the grey-level coding). They are coherent between them,
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Figure 18. Wall-normal evolution of the mean radius of the extracted vortices obtained in
the logarithmic layer scaled in wall unit. Present: (solid line) Reθ = 7800; (dashed line) Reθ =
15 000. Carlier & Stanislas (2005): �, (ex, ey) plane and Reθ = 7500; �, (ez, eu) plane and
Reθ = 7500; �, (ez, eu) plane and Reθ = 10 500; �, (ez, eu), plane and Reθ = 13 500; �,
(ez, eu) plane and Reθ = 19 000.
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Figure 19. Probability density functions of the radius r0 of the extracted vortices obtained in
the logarithmic layer scaled with the local Kolmogorov scale η(y) at Reθ = 7800 (�) and Reθ =
15 000 (�); solid lines, DNS of channel flow at Reτ = 1270 (Kang et al. 2005).

showing a relative independence with respect to the Reynolds number, but they are
slightly above the preceding results, indicating that, probably, some of the smallest
eddies have been missed, shifting the mean value slightly upward. In the present data,
a shift upward is also clearly observed at Reθ = 15 000. It is attributed to the lack of
spatial resolution at this Reynolds number (as mentioned in § 2, the spatial resolution
increases from 5 to 10 wu), which leads to missing also some of the smallest vortices.

In figure 19, the p.d.f. of r0 is presented scaled with the Kolomogorov length scale
η(y) for both Reynolds numbers. In this figure, each vortex radius is scaled with η(y)
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Figure 20. Wall-normal evolution of the mean radius of the extracted vortices obtained in the
logarithmic layer scaled with the local Kolmogorov scale η(y). (solid line) Reθ = 7800; (dashed
line) Reθ = 15 000.

at the ordinate of its centre before the p.d.f. is computed. Obviously, all the probability
density functions collapse well, supporting the scaling already found by Tanahashi
et al. (2004); Kang et al. (2005) and Das et al. (2006) in their DNS of channel
flows. The fact that part of the smallest eddies are missed at the highest Reynolds
number does not seem to affect the result, supporting strongly the universality of
the representation (if they were captured, they would probably fall on the same
curve). In this figure, these probability density functions obtained from experimental
data are also compared to those obtained by Kang et al. (2005) in their DNS of a
channel flow at a Reynolds number Reτ = 1270 (which can be compared to δ+ = 2680
and 4941 here). All the radius distributions are found to correspond well when the
considered radius remains below r0/η < 12. Above this value, some discrepancies
appear between the experimental and the numerical results. This may be attributed
to the experimental investigations being limited to one plane normal to both the wall
and the mean flow (more or less streamwise vortices), while in the DNS, the above
mentioned authors took into account all the vortices detected in the flow. Thus, the
class of vortices corresponding to the larger scales is probably not exactly the same
in both studies. It is important to note at this stage that the left part of the curves of
figure 19 collapse well between experiments and DNS, and evidence vortices down to
the Kolmogorov scale (although these are not fully captured by PIV).

Figure 20 gives the mean value of r0 scaled by η(y) and as a function of y/δ.
This figure confirms the Reynolds-number independence in this representation. As
discussed above, the small difference between the values obtained when approaching
the wall at the two Reynolds numbers should be attributed to the difference in spatial
resolution between the two experiments. The mean radius value obtained at Reθ =
15 000 is somewhat overestimated, as the smaller scales tend to be discarded by the
coarser spatial resolution in wall units. When considering the results obtained for
the lowest Reynolds number, the value of the mean radius is almost constant and
corresponds well to the value found by Kang et al. (2005) and Tanahashi et al.
(2004) who evaluated the most expected diameter to be of 10–12 η in the log region.
The slight increase toward the wall observed here at the highest Reynolds number is
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Figure 21. Probability density functions of the vorticity ω+
0 of the extracted vortices

obtained at various height at (a) Reθ = 7800 and (b) Reθ =15 000.

analogous to the finding of these authors. The above discussion leads to the hypothesis
that the DNS of Tanahashi et al. (2004) was, maybe, slightly under-resolved near the
wall.

The present results are in good agreement with those from the linear estimate of a
swirling event in § 4.3 and reveal that the LSE slightly overestimates the mean radius
of the individual vortices.

5.1.3. Vorticity distribution of the eddies

The same analysis as the one performed on the radius can be conducted on the
vorticity deduced from Γ0 in the model fit of (4.4). This is done here for both Reynolds
numbers.

Probability density functions of the vorticity ω+
0 obtained at various wall distances

across the boundary layer are presented in figures 21(a) and 21(b). At both Reynolds
numbers, the width of the distribution of this quantity, as well as the most probable
value, decrease significantly with the wall-normal location and tend to saturate for
y+ > 150. This seems to indicate that, contrary to the near-wall region, the logarithmic
layer is populated by a specific class of vortices that presents a limited range of
vorticity fluctuation. The Reynolds-number effect in this representation (not shown)
is comparable to that observed on r+

0 and leads to the same conclusions.
Figure 22 presents the above probability density functions scaled by the local

Kolmogorov time scale τ (y) = (ν/ε)1/2. This scaling leads also to the collapse of the
probability density functions, bringing again strong support to the fact that the vortex
characteristics can be normalized by dissipative scales (Tanahashi et al. 2004; Kang
et al. 2005; Das et al. 2006).

The wall-normal evolution of the mean vorticity corresponding to the probability
density functions in figures 22 is plotted in figure 23. This figure confirms the
Reynolds-number independence of the vorticity when scaled by τ (y). The lower
Reynolds number, which is the best resolved spatially, supports the idea of a constant
value across the log layer in this scaling.
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Figure 22. Probability density functions of the vorticity ω0 of the extracted vortices obtained
in the logarithmic layer normalized by the local Kolmogorov time scale τ (y) at Reθ = 7800 (�)
and Reθ = 15 000 (�).
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Figure 23. Wall-normal evolution of the mean vorticity of the extracted vortices obtained in
the logarithmic layer normalized by the local Kolmogorov time scale τ (y), at (solid line) Reθ =
7800 and (dashed line) Reθ = 15 000.

The eddy eduction method proposed in the present study enables the evaluation
of characteristic parameters of the detected vortices, but also the computation of the
maximal azimuthal velocity uθmax via the analytical form of the model (equation (4.4)).
Probability density functions of this quantity scaled by the Kolmogorov velocity scale
υ = (νε)1/4 are presented and compared to the results of the DNS of Kang et al.
(2005) in figure 24. As found by Tanahashi et al. (2004) and Kang et al. (2005) in
their numerical studies, the distributions obtained throughout the log layer at both
Reynolds numbers correspond well when normalized by the Kolmogorov scale. The
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Figure 24. Probability density functions of the maximal azimuthal velocity uθmax of the
extracted vortices obtained in the logarithmic layer normalized by the Kolmogorov velocity
scale υ(y) at Reθ = 7800 (�) and Reθ = 15 000 (�); solid lines, DNS of channel flow at
Reτ = 1270 (Kang et al. 2005).

most expected value is between 2 and 2.5 υ which slightly overestimates the value
found in the DNS studies of these authors. These differences should be attributed to
the different detection techniques employed, as well as to the method used to evaluate
uθmax . Probably, the lack of resolution of the smallest velocities by PIV, owing to its
limited dynamical range also has some influence. This could explain the slight shift
to the right of the peak between DNS and experiments. Nevertheless, distributions
of the maximal azimuthal velocity, obtained both in the experiments and in the
simulation, collapse reasonably well, confirming the Reynolds-number independence
of the vortex characteristics when scaled with Kolmogorov scales.

5.2. Conditional analysis

Using the proposed vortex validation method, maps of the presence of vortices can
be built. For each velocity map, a function is constructed by imposing the value
of one in a circle of radius r0 centred at the centre of each detected vortex and
zero elsewhere. Clockwise and counter-clockwise rotating vortices are separated into
two-groups. Then, two-point spatial correlations are computed in order to study the
relationships between the two populations.

Figure 25 illustrates correlation maps between co-rotating vortices obtained at
different wall-normal locations with a counter-clockwise rotating vortex at three
reference points, including the LSE condition point of figure 11. Correlation maps
show a single maximum corresponding to a self-correlation peak (which is normalized
by the number of vortices at the given altitude) and no particular spatial organization
owing to the interaction of co-rotating vortices. The correlation levels obtained in the
surrounding of the main peak (of the order of 0.15) indicate that the probability of
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Figure 25. Correlation between co–rotating vortex for a counter-clockwise rotating vortices
located at the reference point at (a) y+

ref = 50, (b) y+
ref = 100 and (c) y+

ref = 300; contour

increment of 0.1 from 0 to 1; Reθ = 7800.

having a vortex of the same sign in the neighbourhood of a given vortex is relatively
low, but not zero, and uniformly distributed. To put an order of magnitude, at Reθ =
7800, about 80 000 vortices have been detected in 2940 maps. This gives about
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27 vortices in each field of 750 × 492 wu. With the hypothesis that these vortices
are more or less evenly distributed, this gives about seven vortices in the field of
figure 25(a). That is about three vortices of the same sign. Having one vortex at
the fixed point, there are on average two vortices of the same sign around it in
each instantaneous field building figure 25(a). The level of 0.15, as it is uniformly
distributed, evidence this probability.

Figure 26 shows correlation functions between counter-rotating vortices obtained
for a counter-clockwise rotating vortex at the reference point. For y+

ref = 50 (figure 26a),
counter-rotating vortices are more likely to be found at distances between 50 and 150
wall units from the fixed point. This can be viewed as the statistical imprint of the
interaction of counter–rotating vortices via mechanisms of generation of secondary
vortices (Zhou et al. 1999) or interaction between hairpin vortices within a hairpin
packet (Tomkins & Adrian 2003) or the evidence of symmetrical hairpin structures.
The maximum of correlation is located on the right-hand side of the reference point,
at a distance of 75 wall units. This corresponds well to the picture of a quasi-
symmetric hairpin-shaped vortex. However, the low level of correlation (less than
11 %) reveals that the probability of the existence of a two-legged hairpin structure
remains weak. At y+

ref = 100, the peak of correlation on the right-hand side is still

present and nearly of the same amplitude (<11 %) as for y+
ref = 50. A second peak

is found below the reference point, on its left-hand side and may be attributed to
the interaction with secondary vortices. At y+

ref = 300, correlation levels remain higher
on the right-hand side of the reference point, but just 2 % above the background
level. Correlation maxima are weaker than in the near-wall region (<8%). Thus,
in the logarithmic layer, the most probable vortical structure corresponds to a leg
of a strongly asymmetrical hairpin structure, with a weak probability of finding a
counter-rotating vortex in its neighbourhood.

Inspection of correlation maps obtained with a clockwise-rotating vortex located at
the reference point shows similar results, but symmetrical with respect to the vertical
axis, in agreement with the spanwise homogeneity of the flow.

6. Fluctuating vorticity budget
Having investigated thoroughly the characteristics of vortices in a turbulent flow,

it is worth looking in detail at the equation for the mean square of the fluctuating
vorticity field. This equation, which is given, for example, by Tennekes & Lumley
(1972) is:
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where [1] is the convection by the mean flow, [2] is a turbulent diffusion term, [3]
is the production by the gradient of mean vorticity (analogous to the production
term of the turbulent kinetic energy equation), [4] represents the stretching/shrinking

of ω′
i
2 by the mean rate of strain, [5] is a term of production of ω′

i
2 by turbulent
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Figure 26. Correlation between counter-rotating vortex for a counter-clockwise rotating
vortices located at the reference point at (a) y+
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ref = 100 and (c) y+

ref = 300;

contour increment of 0.01 from 0.02 to 0.12; Reθ = 7800.

stretching, [6] has the specificity to appear both here and in the equation for ω2
i as a

production term owing to stretching of fluctuating vorticity by strain rate fluctuations,

[7] is viscous diffusion and, finally, [8] is the dissipation of ω′
i
2.
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In their discussion (pp. 84–92), Tennekes & Lumley (1972) make an interesting
analysis of the order of magnitude of the different terms of this equation in the case
of a high-Reynolds-number ‘two-dimensional mean flow’ (that is u3 = 0, ω1 =ω2 = 0,
∂/∂x3 = 0 and ∂/∂x1 
 ∂/∂x2). They come to the following estimation of the different
terms:
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where u is the order of magnitude of the turbulent velocity fluctuations (u ≈
√

1
3
u′

i
2),

l is the length scale of the energy-containing eddies (Taylor integral scale) and λ is
the Taylor micro scale. This supposes some hypotheses on the order of magnitude of
different single terms which are detailed by these authors; only two of them will be
recalled here.

(i) The term ω′
iω

′
j , which appears in [4], is estimated as (u2/λ2)(λ/l) for i �= j

(compared to ω′
iω

′
i ≈ (u2/λ2)), with the argument that the effect of the mean strain

rate on the turbulent vorticity structure is weak, which can be represented by making
it proportional to the time scale ratio (λ/u)(u/l).

(ii) The correlation of velocity and vorticity fluctuations ω′
iu

′
j is estimated of order

u2/l, based on the fact that it is tightly linked to the gradient of Reynolds shear
stress.

In fact, Tennekes & Lumley (1972) estimate the order of magnitude of all but the
last term [8]. They observe that, at high Reynolds number, [5] dominates the other
estimated terms and conclude that dissipation should balance term [5] and thus have
the same order of magnitude. This leads to a fairly simple equation:
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(
∂ω′

i

∂xj

)2

, (6.2)

which is independent of the mean flow.
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Based on dimensional similarity, this simple equation leads them to an estimation
of the length scale characteristic of the fluctuating vorticity gradient, which they show
to be proportional to the Kolmogorov length scale η. This conclusion is strongly
supported by the results of § 5.

In fact, from the results obtained in the present contribution, set in the context
of the above-mentioned literature, a few points can be emphasized concerning the
physics of near-wall flows:

(i) The coherent vortices observed in the inner layer of the boundary layer scale
with the Kolmogorov scales. This is deduced here from the analysis of PIV data and
is in good agreement with the DNS results of Tanahashi et al. (2004), Kang et al.
(2005) and Das et al. (2006),

(ii) In the log layer, these vortices seem, on average, to align preferably along the
mean flow, at an angle of about 45◦ to the wall (which means that they somehow
interact with the mean shear of flow),

(iii) There is a large variability around this mean picture of the vortex tubes in the
log layer (see del Álamo et al. 2006),

(iv) The observed coherent vortices have a long lifetime and are seen to be
transported by the mean flow in the near-wall region.

Based on these observations, it is of interest to revisit the analysis of Tennekes &
Lumley (1972).

In order to give it more generality, let ω′
i ≈ aτ−1 be the order of magnitude of

the fluctuating vorticity, with a a constant (a ≈ 1.6 for the vortices detected in the
present study) and τ the Kolmogorov time scale. Let then bη be the length scale of
the turbulent vortices with b a constant and η the Kolmogorov length scale (b ≈ 10 in
the present study if the mean vortex diameter is considered). Beside that, let Vj be the
scale of the mean velocity component uj , and Lj the length scale in the evaluation of
the gradient in the convection term. All the other terms are estimated as in Tennekes
& Lumley (1972). On this basis, after dividing by (a2/τ 2)(u/l), the different terms of
(6.1) can be estimated as follows:
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where u and l are the energy containing eddies scales, as previously defined.
A first remark is that, as a and b are of order 1 or more, it is the turbulent stretching

term [5] which is the kernel of this equation at any scale. It is the only term which is
just a Reynolds number at a positive power.

Taking in a first step a = b = 1 (that is looking at the Kolmogorov scale), ul/ν  1
and Vj ≈ u (as was done by Tennekes & Lumley 1972), we come to the same conclusion
as these authors: the turbulent stretching [5] is balanced by viscous dissipation [8]
and these two terms dominate all the others. This result obviously contradicts the
observation that the vortices more or less align streamwise in the log layer.

To push the analysis to more detail, we must look first at the convection term [1]
which, as the turbulent stretching term [5], does not involve the coefficients a and
b in its order of magnitude (thus it has the same importance at all vortex scales).
For this term to be significant, we should have at least (Vj/u)(l/Lj ) ≈ (ul/ν)1/2. Such
a comparison can easily be performed using the present hot-wire measurements. As
the main convective term corresponds to j =1, (l/L1) should be much smaller than
1, based on the standard boundary-layer hypothesis. We must then check the order
of magnitude of (V1/u). Figure 27 gives, for the four Reynolds numbers under study,

u1/

√
u′

1
2 as a function of y+. On the same graph is plotted (y

√
u′

1
2
/ν)1/2. As can

be seen, they are of comparable order of magnitude in the whole boundary-layer
thickness, which means that, thanks to l/L1, the convection term [1] can be neglected
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with respect to term [5] in the inner region at least. Also note on this graph that

(y

√
u′

1
2
/ν)1/2 becomes of order 10 only above y+ of the order of 20 to 30. In the

viscous sublayer, it goes to order 1 and terms [2] and [6] at least should be looked at.
The next terms to be estimated are those involving the interaction of the turbulent

vorticity field with the mean flow velocity gradients. The first term including such a
gradient is term [3]. This has been estimated here of order auτ−1(u/l2), leading to
being negligible. The scaling of the mean vorticity gradient is difficult to question
as it is merely a second derivative of the mean velocity. Besides, apart from the
contributions of Klewicki (1989) and Priyadarshane et al. (2007), little is known on
the velocity–vorticity correlation. To allow term [3] to be comparable to term [5], the
order of magnitude of the velocity–vorticity correlation should be:

u′
jω

′
i ≈ a

u2

l

(
uλ

ν

)3

. (6.3)

This is much larger than the estimation of Tennekes & Lumley (1972) of u2/l.
As the main mean vorticity component in a boundary layer is ω3, which varies

mostly along x2, the main component of the above correlation tensor should be u′
2ω

′
3.

This correlation can be assessed from streamwise/wall normal (x, y) PIV data. This
was performed here from the PIV data recorded by Kähler et al. (2000) which are
stored in the WALLTURB database (wallturb.univ-lille1.fr). Figure 28 shows the plot
of this quantity as a function of y+ for the two Reynolds numbers available, together
with u2/y. As can be seen, in the whole range of investigation, the velocity–vorticity
correlation is one to two orders of magnitude smaller than u2/y, which means that
the above condition cannot be fulfilled. The corresponding term [3] can thus be
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considered as negligible. The values provided by Klewicki (1989) and Priyadarshane
et al. (2007) from multiple hot-wire measurements give a higher estimation of u′

2ω
′
3,

but which would lead it at best to be of order u2/y.
The second (and last) term to look at in relation to mean velocity gradients is term

[4], which involves the mean strain rate tensor. Again, the estimation of sij ≈ u/l is
difficult to question. In a boundary layer, the main component of the mean shear stress
tensor is s12. Figure 29 shows (du1/dy)(y/u) as a function of the wall distance y+. It
is clear that this parameter is of order 1 in the whole boundary layer. Consequently,
we must look at the order of magnitude of ω′

iω
′
j . For term [4] to be comparable to

term [5], we should have:

ω′
iω

′
j ≈ u2

λ2

uλ

ν
≈ u2

η2
. (6.4)

This can be compared to the estimation of Tennekes & Lumley (1972) which is
u2/λ2 and to the order of magnitude of ω′

iω
′
i which is estimated here as υ2/η2.

The question whether ω′
1 and ω′

2 are well correlated is difficult to answer
quantitatively from the existing experiments, which do not give access to this
quantity (a specific dual-plane PIV experiment should be performed for that purpose).
Nevertheless, all the data available in the log layer show many vortices scaling on
η inclined more or less at 45◦ downstream. This is a good indication of such a
correlation. The Reynolds number uλ/ν being not so large, we can expect this
statement to be true in the whole inner layer, whatever the size of the vortex is. Another
strong argument supporting the effective action of term [4] is given in figure 30.
This figure gives the mean convection velocity of the vortices as a function of wall
distance for the two Reynolds numbers (7800 and 15 000) and compared with the
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function of y+, compared to the flow mean velocity u+. Reθ = 7800, convection velocity (∗),
mean velocity (—); Reθ = 15 000, convection velocity (�), mean velocity (- - -).

respective mean velocity of the flow. A logarithmic representation in wall units has
been chosen to underline the region under study. A good portion of a real log layer is
included at both Reynolds numbers. At Reθ = 7800, the limit of the viscous sublayer is
reached. In both cases, data are available in the buffer layer. The figure clearly shows
that the convection velocity of the vortices is very close to the mean flow velocity
in both cases, and this in the whole field of investigation. It should be remembered
here that this is the streamwise convection velocity of the legs of the hairpins. If the
legs, at whatever wall distance they are cut, are convected at the local mean velocity,
this means that on average, they are stretched by the mean shear. The corresponding
term has thus to be kept in the budget and its order of magnitude as estimated in
(6.4) is justified de facto.

The last term to consider is the dissipation term [8]. In the present scaling, the main
difference with the Tennekes & Lumley (1972) analysis is the coefficient 1/a2b2 in the
estimation of this term. This coefficient is representative of the fact that dissipation
depends strongly on the scale of the vortices (b2). When considering vortices of the
Kolmogorov size, a = b = 1 and this term is comparable to term [5]. Now, looking at
the mean vortices in the present study, a ≈ 1.6 and b ≈ 6. This leads to a2b2 � 100,
which means that the dissipation of fluctuating vorticity is already negligible at one
order of magnitude above the Kolmogorov scale. Vortices have to go down to the
Kolmogorov scale to be killed by viscosity. We can thus expect the observed mean
vortices to have a lifetime much longer than τ (which should be interpreted here
more as a turnover time) and to be stretched on significant distances by the mean
shear in the near-wall region.

As a consequence of the above analysis, equation (6.1) for the mean square vorticity
fluctuation should be:
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[2] [4] [5] [6] [8]
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in the viscous sublayer, and

0 = ω′
1ω

′
2s12 + ω′
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′
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′
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)2

(6.6)

[4] [5] [8]

in the buffer and log layers.
Equation (6.5) appears fairly complicated and is difficult to comment on further

based on the present results, as they do not resolve the viscous sublayer. Equation (6.6)
differs from that of Tennekes & Lumley (1972) only in term [4] and is fairly coherent
with the observation from both experiments and DNS in the log layer: more or less
distorted vortex tubes which size on Kolmogorov scales and which have relatively
long lifetime travel along the wall and align more or less at 45◦ downstream (term
[4]) but with a high variability (term [5]). As underlined by figure 5, significant
energy dissipation occurs in the buffer and viscous sublayers. The similarity of the
distribution of figures 5 and 15 supports the idea that part of this dissipation is
done by the vortices themselves. The above analysis indicates that, in vortices, this
dissipation occurs mostly at the Kolmogorov scale and that the vortices observed in
the buffer and log regions, which are about 10 η on average, already dissipate very
little. The dissipation term should nevertheless be kept in (6.6), as the p.d.f. of vortices
clearly show that Kolmogorov scale vortices can be found in the whole region under
study. The decrease of ε away from the wall could thus be linked to the decrease
of the mean number of vortices and not to a change in their size distribution (cf.
figures 5 and 15).

7. Discussion
Having recognized from the literature survey that vortices play an important role

in near-wall turbulence, and a certain number of them preferably align more or less
with the mean flow, the present contribution was focused on streamwise vortical
structures existing in a turbulent boundary layer. The aim was to investigate the
dynamics of these eddies in the buffer and log layers and to try to extract some useful
scaling from the data. For that purpose, velocity fields acquired by stereoscopic PIV
in the (y, z)-plane at Reynolds numbers Reθ = 7800 and 15 000 were analysed using
different mathematical tools. In particular, a vortex extraction method has enabled us
to determine quantitative characteristics of vortices cutting this plane. Also, given the
spatial character of the available measurements, spatial organization and distribution
of these vortices could be studied in detail with different mathematical tools.

The first point that comes out of this analysis is the difference in vortex
characteristics and behaviour between the region above y+ � 150 (say above 100
to 200, that is in the log layer) and the region below this limit (say in the buffer
layer, as the viscous sublayer is not resolved here). This result is coherent with the
behaviour of the skewness and flatness factors of the streamwise velocity fluctuations
displayed in § 3. These quantities reveal a strong change in the turbulence physics
between y+ =10 and 150. The data presented here do not resolve the viscous sublayer,
but they are in agreement with the upper limit of 150.

The second important result concerns the shape of these streamwise vortices.
The predominance of hairpin-shaped structures as a main element of the turbulent
boundary-layer structure has been already suggested by several authors (Head &
Bandyopadhyay 1981; Perry & Chong 1982; Adrian et al. 2000b; Hutchins et al. 2005).
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The vortex extraction technique used here, combined with the chosen measurement
configuration, was expected to provide information on the leg parts of these coherent
structures. As the detection scheme used is based only on a swirling event and as
the information is available in only one plane at a time, we must bear in mind that
some of the detected vortices can be isolated, with no direct relationships with wall-
attached hairpin structures. However, some effective and quantitative conclusions can
be drawn from the present results.

Investigation of the two-point spatial correlation tensor of the swirling strength,
of the one- and two-point LSE, as well as the conditional analysis of the presence
of vortices, reveal that the most probable form of streamwise vortices is strongly
asymmetrical and probably resembles a cane or hook more than a hairpin. This con-
clusion was already supported by the results of Carlier & Stanislas (2005), who found
about twice as many heads as legs of one sign in the log layer. Statistical evidence of
counter-rotating vortices, which could be the footprint of more symmetrical structures
is found only in the very near-wall region. Negative levels of Rλsλs

are of the order of
5%, for y+ � 100 and the probability of finding counter-rotating vortices is shown,
in the conditional analysis, to be higher in the near-wall region. Moreover, the
above correlation tensor turns out to be rather isotropic (e.g. in this region, negative
correlation can be found in all the domain surrounding the reference point), indicating
that no preferred organization exists. If the distance between the reference point and
a negative extremum of correlation is in good agreement with the streak width found
experimentally by Stanislas et al. (2005) (see also Lin 2006), the isotropic character of
the correlation pattern is more favourable to the existence of asymmetrical vortices
interacting with each other via:

(i) mechanisms of vortex generation, as proposed by Hanratty & Papavassiliou
(1997), who supposed that new vortices are created by the interaction of older
vortices with the wall;

(ii) secondary vortices generated by hairpin vortices present in hairpin packets as
evidenced by Zhou et al. (1999);

(iii) mechanisms of vortex annihilation that imply mutual vorticity cancellation as
suggested by Perry & Chong (1982);

(iv) turbulent dissipation.
The linear stochastic estimation, performed with one or two conditions, fully

supports the above conclusion. If there is a coupling between nearby vortices, it
should be through processes leaving no imprint in the LSE analysis. This least-squares
analysis provides a clear image of a single vortex which, if positive (counterclockwise),
is linked to a low-speed lifting region on its right and a high-speed sweeping region
on its left. These side regions increase in size when going away from the wall, while
the vortex stays nearly constant in size and intensity.

Conditional analysis conducted with the vortex validation method proposed by
Carlier & Stanislas (2005) confirms that most vortices are present in an asymmetrical
form (the probability of finding counter-rotating vortices remains below 11 % and
is mostly located below y+ = 150). Although a peak of probability corresponding to
the classical picture of a two-legged hairpin vortex exists in the near-wall region, its
level is only a few per cent above the background level. Thus, if two-legged hairpins
exist, the most probable vortices are asymmetrical ones. Inspection of instantaneous
velocity fields and maps of the position of the detected vortices (not shown) supports
these conclusions.

The third point to emphasize is that, based on the quantitative data provided by
the different approaches, some scaling information can be derived from the present
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results. Evaluation of the radius of the detected streamwise vortices by correlation
of swirling strength, linear stochastic estimation of a swirling event or by the fit
of an Oseen vortex model are in good agreement. This gives some confidence in
the results. The latter two methods reveal that the characteristic size of eddies first
increases slightly with y in the near-wall region and then tends to become almost
constant for y+ > 150. This result is in good agreement with the previous study of
Carlier & Stanislas (2005) in a similar configuration and also with the numerical
studies of Tanahashi et al. (2004) and Kang et al. (2005). By using the evaluation of
the Kolmogorov length η(y), time τ (y) and velocity υ(y) scales from available hot-
wire measurements, both the characteristic radius, vorticity and maximum azimuthal
velocity of the detected vortices are found to scale with the local Kolmogorov scales
throughout the logarithmic region. With this scaling, distributions of the radius and
vorticity associated to the detected vortices are also found to be independent of
the wall-normal location of the vortex position. The mean radius of the vortices is
of the order of 6η (with a distribution between 1 and 30η). The mean vorticity is
about 1.6 τ−1 (with a distribution between 0 an 10 τ−1). As shown by figures 17
and 24, the present results, based on the experimental investigation of boundary-layer
flows at Reynolds numbers Reθ up to 15 000, are fully consistent with those from the
numerical study of Kang et al. (2005) performed in channel flows at Reynolds number
Reτ up to 1270. As will be seen later on, this result is important, as it emphasizes the
importance of the Kolmogorov scales in wall turbulence.

In their contribution, Tomkins & Adrian (2003) studied the spanwise growth of
hairpin structures by analysing the width of the conditionally extracted hairpin. In
fact, this scale was based on a measure of the width of the low-speed regions at
zero streamwise separation. They found that, on average, this scale evolves almost
linearly with y, with a growth rate value of almost 1. Consequently, the mechanism
of spanwise growth that they proposed predominantly affects the regions of constant
longitudinal velocity rather than the vortical structures constituting the leg and head
parts of the hairpin-shaped vortices themselves. It is in agreement with the growth
of the regions of high and low streamwise velocity observed here with the one-point
LSE (figure 11).

Study of the wall-normal distribution of the detected vortex number (figure 15b)
shows that we can distinguish two regions. The near-wall region (e.g. for y+ � 150)
exhibits a large number of vortices (and a high level of dissipation, see figure 5),
which decreases rapidly away from the wall. In the logarithmic region, the vortex
density still decreases, but with a slower rate. It should be noted here that a plot
in logarithmic scale of this quantity (not shown here) suggests that it may follow a
power law as a function of y in the logarithmic region.

The evolution of the number of vortices obtained in the present study is in good
agreement with previous studies on mechanisms of wall turbulence (Panton 1997)
which showed that most of the vortices are produced in the near-wall region and then
lift up away from the wall. From the present observations, a scenario for the life-cycle
of vortices can be suggested: vortices are mostly generated in the near-wall region via
various mechanisms involving spanwise instabilities, vortex–wall interaction (Panton
1997) or auto-generation from existing hairpin structures (Zhou et al. 1999). They
then undergo strong stretching, owing to the important mean velocity gradient in
the very near-wall region (see figure 29), which leads to a thinning of the vortex
tubes and an increase of the dissipation process within the vortical structures. This
mechanism finally ends with the death of part of the eddies. In this densely populated
region, vortices may also be submitted to interaction with each other through pairing
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mechanisms (between co-rotating vortices) or vorticity cancellation (between counter-
rotating eddies). As a consequence, a large fraction (almost 50 %, see figure 15)
of the created eddies disappears in the region between the wall and y+ = 100. The
‘surviving’ vortices amalgamate in clusters (Tanahashi et al. 2004) that are stretched
up, and in which processes of self- and mutual induction can lead to lift-up motion.
Thus, vortices propagate throughout the logarithmic layer where velocity gradients
become weaker. This scenario is consistent with the simplified wall–turbulence model
proposed by Perry & Chong (1982) and Perry & Marusic (1995), except for the
Λ-shaped vortices they use in their study. Nevertheless, the present results should
help to design vortex distribution in models such as those cited above.

As mentioned earlier, Hutchins et al. (2005), via the analysis of the two-point
spatial correlation of the longitudinal velocity component, came to the conclusion
that two regimes, defined as attached or detached eddies, exist: near the wall, where
events are still strongly influenced by it; or away from the wall where no-correlation
exists with events at the wall. Looking at the correlation that exists here between
vortical motion and regions of constant longitudinal velocity (figure 11), the results
of Hutchins et al. (2005) corroborate the scenario proposed in the present paper, in
which vortices present in the logarithmic region have limited influence from the wall.

Based on the above analysis and on the fact that the Kolmogorov scale is nearly
constant very near to the wall and universal in wall units in the whole inner layer
(figure 6 gives η+ ≈ 2 up to y+ ≈ 30), it is possible to revisit the well-known structure
of this inner layer in the light of the Kolmogorov vortices.

(i) The viscous sublayer, which is commonly considered as 5 wu thick is thus about
2.5 Kolmogorov scales. Remembering from figure 17(b) that the radius of individual
vortices goes down to η, this layer has a thickness of the order of the diameter of
Kolmogorov vortices. If such vortices exist, they should be more or less parallel to the
wall. They should strongly interact with the wall and dissipate. This is supported by
the distribution of ε in figure 5. It is probable that, owing to this strong dissipation,
these vortices have a short lifetime, of the order of their turnover time τ (of the order
of 100 µs near the wall at Reθ = 20 800).

(ii) The standard buffer layer, which is about 50 to 60 wu thick is about 25 to
30 Kolmogorov scales. In this region, vortices with a radius of the order of 10η

(one order of magnitude bigger than in the viscous sublayer) should be more or less
parallel to the wall. These are the wall-attached streamwise vortices put in evidence
by many authors in this buffer layer (Panton 1997). Lin (2006) studied them in detail
and showed that they are centred between 20 and 30 wu, parallel to the wall and with
a spanwise angle with an r.m.s. value of the order of 15◦. These vortices last much
longer than the Kolmogorov ones as it was shown here that they dissipate very little
intrinsically. They probably dissipate somehow by interaction with the wall. It should
be noted here that S(u) shows a minimum at 30 wu (15η) and F (u) at 15 wu, which
may be the imprint of these streamwise vortices. From such a picture, it appears that
the whole viscous and buffer layers would be dominated by vortices in the range of
1 to 10η in radius, more or less parallel to the wall owing mostly to their respective
size and wall distance. It should be emphasized here that this is a region of high
turbulence intensity where the peak of vortex population is observed (figure 15). This
is also the region where an instability mechanism, which is not yet fully agreed upon
is supposed to generate these vortices.

(iii) Between this buffer layer, where most vortices are generated, and y+ � 150 (of
the order of 100η), there is some freedom for vortices which are about 10η in radius
to lift up and interact with each other. The vortex population in this region is still
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high, but decreases rapidly owing to these interactions. Inclined vortices are observed,
preferably downstream owing to term [4] of (6.7), but with a high variability owing
to term [5].

(iv) The log layer which extends here above y+ � 150 and up to y+ in the order
of thousands (≈1000 η too) at high enough Reynolds number, leaves much more
freedom for the vortices to develop, but the experimental evidence is that the stretching
generated both by the mean velocity gradient and by the turbulence leads them to
stay on average at the limit of dissipation ( ≈ 10η). This is partly due to term [4] of
(6.7), but also to term [5] which appears to grow in that region as shown by figure 27.

(v) The wake region is most probably a region where term [4] ceases progressively
to have influence and where (6.7) returns to the original Tennekes & Lumley (1972)
form.

As can be seen, it is possible to describe the whole boundary layer in terms of the
behaviour of vortices scaling with Kolmogorov scales. The highest population of these
vortices appears to be: located between 20 and 30 wu; nearly streamwise; and more
or less parallel to the wall. This seems to indicate that they are generated there by
some instability phenomena (not lower because the viscosity is too strong; not higher
because the velocity gradient is too weak). If parts of these vortices move down to the
wall, they should be strongly stretched by the high mean velocity gradient existing
there (see figure 29) and bound to stay more or less parallel to the wall. They probably
dissipate very quickly. On the contrary, the vortices that move away from the wall
have much more freedom. They can lift up, change orientation and reorganize in the
upper part of the buffer layer and then develop in the log region.

Of course, as a direct consequence of this analysis, comes the question of the wall
friction. To discuss this point, recall the above estimation of the Kolmogorov length
scale near the wall:

ηuτ

ν
≈ 2. (7.1)

In fact, this equation is usually looked at as a scaling of η with uτ and ν: the
standard wall scaling. In the light of the above discussion, it can now be interpreted
as a scaling of uτ with η and ν. If the Kolmogorov scale governs everything in the
near-wall region, it should govern the wall friction.

Going back for a moment to the flat-plate laminar boundary layer, it has been
known since Blasius that it scales with the external velocity Ue and the fluid viscosity
ν. This viscosity is directly responsible for the friction at the wall and representative,
at the level of the continuum, of the Brownian motion. In turbulent boundary layers,
two scalings are classically used: the outer scaling based on Ue, uτ and δ (the velocity
deficit Ue−U scales with uτ and δ) and the inner scaling based on uτ and ν. Specific
scalings have also been proposed, for example by Graaf & Eaton (2000) for u′2, but
none of them has yet succeeded in representing the whole boundary-layer thickness
with a single set of scaling parameters. If the Kolmogorov scales really determine the
friction at the wall, and if they are more representative of the dissipation process
than ε, they should replace ν and a scaling based on Ue and η should work near
the wall. The fluid viscosity would become then a kind of secondary ‘turbulence
thermodynamic quantity’, by contributing (with the dissipation rate) to fix the size η

of the Kolmogorov scale.
Before looking at this hypothesis, it is worth looking at the integral scales. Figure 31

gives, for the four Reynolds number under study, the ratio η/y as a function of y+

(which is considered here as a realistic estimator of ul/ν). On this figure is also
plotted, as a solid line, the fit 0.8(y+)−3/4 to these data which are universal in this
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Figure 31. Kolmogorov length scale η compared to integral scale y as a function of y+.
Reθ = 8200 (∗); Reθ = 11 500 (�); Reθ = 14 500 (�); Reθ =20 800 (�); 0.8(y+)−3/4 (—).

representation. This fit comes from η+ = (κy+)1/4 which gives η+/y+ = κ1/4(y+)−3/4

with κ = 0.41. This result shows that y is in fact a good estimator of the integral
scales at a given wall distance (as η/l ≈ (ul/ν)−3/4). This figure also shows that the
ratio of integral to Kolmogorov scales is of order 1 very near the wall and that it
decreases rapidly away from it. This supports the idea that, very near the wall, η should
be the scale of reference as it is there both the integral and dissipative scale. Now,
from what is known since Kolmogorov on turbulence, when the ratio of these two
scales is large enough (high enough turbulent Reynolds number) the standard cascade
process should take place and turbulence should scale on the energy-containing eddy
scales, that is on something of the order of the boundary-layer thickness in the wake
region. This is the difficulty encountered up to now to link the internal and external
scales of the boundary layer. This scaling problem is illustrated here in a different
way in figure 33. The ratio U/Ue is plotted as a function of y/η. A good universality
is obtained near the wall, as good as with the standard wall scaling (see figure 5
of Carlier & Stanislas 2005), but not in the outer part of the BL. This result is of
course of interest because one external parameter, the free-stream velocity Ue is used,
establishing a link between the external and near-wall flows. Then, only the length
scale can be expected to change from η near the wall to something representative of
the integral scales away from it (for which δ is a good candidate).

Looking at figure 6, we can see that η is slowly growing away from the wall while,
as shown in figure 32 which gives η/y as a function of y/δ in a log–log representation,
the ratio of scales goes progressively to several orders of magnitude when y increases.
It would thus be difficult to switch from η to δ continuously. As the similarity theory
tells us that anything proportional to δ would work as well, it is proposed here to
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Figure 32. Kolmogorov length scale η compared to integral scale y as a function of y/δ.
Reθ = 8200 (∗); Reθ =11 500 (�); Reθ = 14 500 (�); Reθ = 20 800 (�).

define a new length scale η∗ of the form:

η∗ =min

(
η,

δ

A

)
. (7.2)

This equation says that δ takes over as a scaling length when a ratio of A is reached
between ‘integral’ and Kolmogorov scales. The above proposed parameter allows one
to switch continuously the length scaling from η(y) to δ in the corresponding regions
of the flow, keeping Ue as the velocity scale in the whole boundary layer.

The choice of A is somehow connected with the extent of the turbulence spectrum.
Different tests on the present data lead A to be of the order of 1000. This value is not
very sensitive. Between 900 and 1100, relatively comparable results are obtained. The
value A= 1000 is thus retained as it can be interpreted easily: the switch occurs when
there are three orders of magnitude at least between δ and η. If Kolmogorov scale η

is less than δ/1000, it is far enough from the flow scales to be fully representative of
the dissipation process only. If it is above this order of magnitude, it becomes a kind
of mixed length scale which is not adequate for scaling the flow properly.

Figures 34 to 37 give, respectively, the mean velocity gradient, the mean velocity
profile, the profiles of the three turbulent intensities and the profile of the Reynolds
shear stress in the proposed scaling, for the four Reynolds numbers under study.
Apart from the lowest Reynolds number, which shows a slightly different behaviour,
probably owing to the low-Reynolds-number effect (and maybe partly to the difficulty
of measuring with hot wires at low velocities), all these quantities show good
universality in this representation (taking into account the crude approach used
for the determination of η from the hot-wire data). The agreement is apparently not
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Figure 33. Mean velocity as a function of wall distance scaled with the external velocity
Ue and the Kolmogorov length scale η. Reθ = 8200 (∗); Reθ = 11 500 (�); Reθ = 14 500 (�);
Reθ = 20 800 (�).
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Figure 34. Mean velocity gradient as a function of wall distance scaled with the external
velocity Ue and the clipped Kolmogorov length scale η∗. Reθ = 8200 (∗); Reθ =11 500 (�);
Reθ = 14 500 (�); Reθ = 20 800 (�).
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Figure 35. Mean velocity as a function of wall distance scaled with the external velocity Ue

and the clipped Kolmogorov length scale η∗. Reθ = 8200 (∗); Reθ =11 500 (�); Reθ = 14 500
(�); Reθ = 20 800 (�).
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Figure 36. Turbulence intensities as a function of wall distance scaled with the external
velocity Ue and the clipped Kolmogorov length scale η∗. Reθ = 8200 (∗); Reθ = 11 500 (�);
Reθ = 14 500 (�); Reθ = 20 800 (�).

so good for the Reynolds shear stress u′v′. Here also, the lowest Reynolds number
shows a slightly different shape, probably for the same reasons as mentioned above.
Of more concern is the level problem at Reθ = 20 800. The global shape and peak
position are correct, but the overall level is too low. This discrepancy is attributed here
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Figure 37. Reynolds shear stress as a function of wall distance scaled with the external
velocity Ue and the clipped Kolmogorov length scale η∗. Reθ = 8200 (∗); Reθ =11 500 (�);
Reθ = 14 500 (�); Reθ = 20 800 (�).

to measurement errors: this quantity is very difficult to measure with hot wires and
even in wall units (see Carlier & Stanislas 2005, figure 8), the universality is not good.
These errors were recently highlighted by Lin (2006) using PIV in planes parallel
to the wall. Consequently, it can be said that, in the present range of confidence,
figures 34 to 37 support the above analysis and the proposed scaling.

It is, of course, of interest at this stage to see at which wall distance y∗ the scale η∗

switches from η to δ/1000. This result is given in figure 38 as y∗/δ as a function of
Reθ . It can be seen that this parameter increases linearly with Reynolds number. For
comparison, the thickness of the log layer (estimated from the velocity profiles) is also
given in figure 38 as δlog/δ. It is clear from this figure that, as the Reynolds number
increases, a growing part of the wake region scales on Ue and η. This supports the
idea that the dynamic range of scales in the boundary layer has to be large enough
(about three orders of magnitude) for the Kolmogorov scales to be representative of
the dissipation process only. It is to be noticed that this dynamic range is based on δ

and not on y for the integral scales. This means that the largest integral scales present
in the flow have to be taken into account and not the local ones. The value y ∗ /δ = 1
is of course of interest, as it corresponds to the limit at which the whole boundary
layer would scale with η. Using the fit given in figure 38, this value is obtained for
Reθ ≈ 35 000. This result supports the idea that at high enough Reynolds number,
in strong analogy with the laminar case, the turbulent boundary layer could become
universal when scaled with the single set of parameters Ue and η. For that to be
true, the Kolmogorov length scale η has simply to be smaller than δ/1000 in the
whole boundary-layer thickness. Such a Reynolds number is not so high and can be
reached already in some existing experimental facilities. Of course, the situation is
not as simple here as in laminar flows. The Kolmogorov scale η, contrary to ν, is not
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Figure 38. Ordinate y∗ of Kolmogorov length scale clipping as a function of Reynolds
number Reθ . y ∗ /δ (�); best least-squares fit (—); δlog/δ (�).

a property of the fluid but of the turbulence and it is seen to vary with y (figure 6)
and also with x. Nevertheless, this result seems to contradict the ongoing idea that
at high Reynolds number, the boundary layer-becomes dominated by the large scale
outer structures. It seems from the present analysis that all the information required
from the outer flow is contained in Ue and that it is the Kolmogorov length scale
which fixes all the rest, by characterizing the way the kinetic energy of the mean flow
is dissipated.

As a last point in this discussion, it is worth rearranging (7.1), taking into account
that ηυ/ν = 1. This leads us to express the wall friction as:

τw

1
2
ρυ2

� 8. (7.3)

This equation can be compared to the one given by a standard similarity analysis
taking ρ, Ue, and any length scale as primary variables:

τw

1
2
ρU 2

e

= f (Re).

The comparison of these two equations leads to the conclusion that some internal
similarity should exists when using the Kolmogorov scales in the very near-wall region
(y+ < 30). This opens the way for some interesting theoretical investigations.

8. Conclusion
An analysis of velocity fields acquired with highly-resolved stereoscopic PIV in the

logarithmic region of a turbulent boundary layer has been conducted in a plane normal
both to the mean flow and the wall, at Reynolds numbers Reθ = 7800 and 15 000. A
two-point spatial correlation tensor of the signed swirling strength, linear stochastic
estimation and a vortex identification algorithm have been used to characterize more
or less streamwise oriented eddies and their interaction. This analysis reveals that
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the most probable structure is asymmetric, corresponding to a one-legged hairpin
vortex (while the mean structure, as evidenced for example by Hutchins et al. (2005)
is symmetric). It also appears that for vortices, the boundary-layer can be roughly
divided into two main regions: a near-wall region, lower than y+ ≈ 150, densely
populated by eddies that interact with each other through different mechanisms
of generation and destruction; and a logarithmic region where vortex interactions
happen less frequently and where vortices are mainly submitted to stretching by the
mean and fluctuating shear stresses. In this logarithmic region, Reynolds number and
wall-normal independences of the probability density functions of the vortex radius
and intensity are obtained when these quantities are scaled by the Kolmogorov length
and time scales, respectively. This result corroborates those obtained by Kang et al.
(2005) in their DNS of a channel flow. The p.d.f.s and most probable values of
radius and maximum azimuthal velocity obtained here are in good agreement with
the findings of these authors. As proper scaling is obtained over the entire range of
detected scales in both the present study and in the numerical investigation of Kang
et al. (2005), it suggests that the vortex dynamics is the same in the whole range of
Reynolds number. A detailed analysis of the transport equation for the mean square
of the fluctuating vorticity indicates that, in the log and buffer layer (but not in the
viscous sublayer), these dynamics are mainly driven by the balance between viscous
dissipation on one side and vortex stretching by mean and turbulent strain rates on
the other.

Based on these observations, the structure of the inner layer can be revisited
and described in terms of layers of increasing order of magnitude with respect to
the Kolmogorov scale (≈1, ≈ 10, ≈ 100, ≈ 1000). This leads us to propose a new
formulation of the wall friction and to propose a new scaling of the near-wall region
flow based on Ue and η. This scaling works in the range of Reynolds number under
study and can be smoothly linked to the standard external scaling by defining a
length scale η∗ using (7.2). The mean velocity profile and the main components
of the Reynolds stress tensor show good universality when scaled with Ue and η∗.
The region scaling with η grows linearly and rapidly with Reynolds number. This
opens a perspective of universal scaling of the whole boundary layer with these two
parameters for Reθ larger than 30 000 to 40 000. This is the range of interest for most
practical applications, including aeronautics.
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